
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Lists, Stacks, Queues
book Chapter 3

Pete Morcos

University of Washington

4/3/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

What’s a List?

• A collection of elements

• Elements are ordered, no gaps
– Sometimes you don’t really care about the ordering. A

list would still be suitable, but there are other data
structures to consider

• Elements are of arbitrary type, but all are the same
– C++ templates make it easier to define multiple list

types

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

List ADT Operations

• Note: slightly different from book
• List MakeEmpty(List L) / void DeleteList(List L)

– DeleteList actually deallocates each list element
– MakeEmpty just initializes list when newly created

• int IsEmpty(List L)
• void Insert(List L, ElementType E, Position P)
• void Remove(List L, Position P)

– void FindAndRemove(List L, ElementType E)

• Position Find(List L, ElementType E)
• Position GetNext/GetPrev(List L, Position P)
• Position First/Kth/Last(List L)
• int Length(List L)

In C++, the
first List
parameter is
implicit; it’s
the “this”
pointer.

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

Two Implementations

• You’ve seen this stuff before, so fast overview
• Array-based

– pre-allocate big array
– keep track of first free slot
– shift elements around on insert/remove

• Pointer-based
– each entry carries pointer to next entry (more memory)
– last entry points to NULL
– main program only stores pointer to first element
– messing with first element requires special-casing

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Array Implementation

typedef struct _ListInfo {

ElementType *theArray; // = malloc(MAX_SIZE * sizeof(ElementType))

int count; // = 0

int maxSize; // = MAX_SIZE

} ListInfo;

typedef ListInfo *List;

typedef int Position;

void Insert(List L, ElementType E, Position P) {

if (P > count || count == MAX_SIZE) Error(“insert out of range!”);

while (P <= count) {

ElementType curEl = L->theArray[P];

L->theArray[P++] = E;

E = curEl;

}

count++;

}

An empty list has a
fully allocated array,
and count = 0.

New ListInfo structs
need to be initialized as
shown.

count0 MAX_SIZE

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Pointer Implementation

typedef struct _node {

ElementType Value;

struct _node *next;

} node;

typedef node *List;

typedef node *Position;

// Insert() adds new node after the one pointed to by P

// (if P is NULL, or list is empty, insert at beginning)

void Insert(List *pL, ElementType E, Position P) {

Position newCell = malloc(sizeof(node));

newCell->Value = E;

if (pL == NULL || P == NULL) { newCell->next = pL; pL = newCell; }

else { newCell->next = P->next; P->next = newCell; }

}

An empty list has a
NULL List pointer.

Note special case for
inserts at head of list.

Value next

Value next

Value next

Value next

List L;

2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Gotchas

• When you write a line of pointer code that breaks
the list, an alarm should go off in your head
– As soon as possible, your code should fix the list up

– Draw pictures to help see what must be done

• Boundary cases require special attention
– Empty list

– Single item – same item is both first and last

– Two items – first item, last item, no others

– Three or more items – first/last/middle items

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Hassle with the Pointer Version

• Because our List points directly to the first entry
in the list, any change to the first entry has to be
reflected in the List variable itself.

• This means we have to change the parameter list
of some functions to take a List pointer, so we can
change it.

• Also need special checks in case List pointer is
NULL, since L->next is invalid in that case.

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

A Solution

• If we add a header node at the beginning of all
lists (even empty ones), problems go away.

• It’s now always valid to reference L->next, since
that refers to the header node. Thus we can use the
same code for all positions in the list.

• When we start iterating through list, need to
“prime the pump” by marching our pointer to
current node one step forward.

(no data—header node) next

List
Empty list, with header node

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

List Analysis

O(N)O(1)Length

pointer impl.array impl.operation

O(N)O(1)Last

O(N)O(1)Kth

O(1)O(1)First

O(N)O(1)GetPrev

O(1)O(1)GetNext

O(N)O(N)Find

O(N)O(N)Remove

O(1)O(N)Insert

O(1)O(1)isEmpty

O(N)O(1)DeleteList

O(1)O(1), O(max N) spaceMakeEmpty

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Tweaking the ADT

• When we look at an analysis such as the previous
slide, some improvements suggest themselves.

• Two types of modification are typical
– Enhance the ADT implementation with more

information or a different organization

– Change the ADT definition, often by restricting the
semantics

• Both have costs, so the choice between basic or
fancy versions is an engineering decision

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

Doubly Linked Lists

• GetPrev (and therefore Remove) is slow (O(N))in the
pointer implementation

• We can’t go from a node to the previous one

• Add a back-pointer to all nodes

• Costs: increase in space used (+50% if data is small), extra
bookkeeping needed in list code

prev Alex next

prev Bob next

prev Cindy next
List

3

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

13

Circularly Linked Lists

• Make last element point to first instead of NULL

• Useful if you want to iterate through whole list
starting from any element
– Avoids need for special code to wrap around at end

• Can be combined with double linking, in which
case the Last() operation gets faster

prev Alex next

prev Bob next

prev Cindy next

List

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

14

Stacks

• Array implementation is nice, but Insert and
Remove require wasteful work

• What if we change the definition of the ADT as
follows?
– You can only Insert or Remove the last list item

• Now both ops become constant time!

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

15

Why Stacks?

• At first, looks silly – too weak of an ADT

• But, in practice this is often all we need
– Want to remember a lot of items, but only deal with the

most recent one

• Mental model is a stack of paper. You can add
sheets to the top, or remove from the top.

• “LIFO” = “Last in, First out”

• Appears in many places in computer science
– Including every time you run a program!

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

16

Stack Details

• Since this is such a restricted list, only need:
– void push(Stack S, ElementType E)

– ElementType pop(Stack S)

– ElementType top(Stack S) // doesn’t remove item

– int isEmpty(Stack S)

– Stack MakeEmpty(Stack S) / void DeleteStack(Stack S)

• Although array implementation seems natural, can
use pointers as well
– If pointer-based, probably want doubly-linked. Why?

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

17

Queues

• Having seen stacks, consider a list ADT that only
inserts at one end, and removes at the other end

• “FIFO” = “First in, First out”

• Like standing in line at the store

• Instead of Push and Pop, we talk about Enqueue
and Dequeue

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

18

Why Queues?

• Items can get “buried” in a stack and not surface
for a long time

• Sometimes, we are concerned with “fairness”
– Jobs sent to a printer

– Applications for a contest

– Input to a computer; mouse, keyboard, etc.

4

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

19

Queue Details

• Again, we can use our knowledge of lists to
implement a queue

• Mixed sequences of enqueue / dequeue

• Pointer-based lists seem natural
– What info needs to be available for a fast implementation?

• Array-based has a problem
– Recall that enqueue/dequeue are basically same as old

insert/remove

– How to fix?

