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Why Trees?

• Lists (Queues, Stacks, arrays, etc.) represent a 
linear sequence

• Some data doesn’t have a single linear ordering
– Moves in a game

– Organizational charts

– Family trees

– Classification hierarchies (e.g. genus/species)

– File directories
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Terms

– Root a

– Leaf d e f h i m n

– Parent g -> c

– Children g -> h i j k l

– Ancestors g -> c a

– Descendants g -> h i j k l m n

– Siblings e -> d f

– “Cousins” e -> g

– Path c-m -> c g j m

– Depth i -> 3

– Height max of depths

• Forest: one or more trees
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More Tidbits

• Recursive definition: a tree is
– an empty set (of nodes), or
– a root with zero or more subtrees

• A tree with N nodes always has N-1 edges
• Edges are directed (parent -> child), but we often imply the 

direction by drawing parent higher up
• Two nodes have at most one path between them
• Sometimes we only put data in leaf nodes; interior nodes 

just there for organization
– Leaf nodes probably a different type from interior nodes
– Otherwise, leaf nodes are just nodes with no children (all NULL)
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Tree Traversal

• Postorder: children, then root
– d e f b h i m n j k l g c a

• Preorder: root, then children
– a b d e f c g h i j m n k l

• Inorder: child, root, child
– Only really makes sense for 

binary trees
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ADT Operations

• These are very generic. If we specify more details on the 
tree’s behavior, we can come up with a more useful set.

• Tree as a whole:
– GetRoot

– Find

– MakeEmpty

• Ops on a node, much like the ops on a list
– AddChild/RemoveChild

– NextChild/PrevChild

• Can make up more . . .
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Implementing Trees

• If there is a (small) max no. of 
children in each node, we can use 
an array (or individual variables) 
to store child pointers

• If the number is unbounded, or so 
large an array would be wasteful, 
we need to implement some kind 
of growable list of children
– Linked list in parent

– Sibling pointers

Value

parent

child

child 1

sibling

child 2 child 3
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Parent Pointers

• As we discussed with doubly linked lists, if each 
node contains a pointer to its parent, some ops 
may get easier
– Not always needed

• And, as with circularly linked lists, you might 
consider pointers to the root in each node
– Unusual
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Application: Expression Trees

• Used in most compilers
• No parentheses needed; tree 

hierarchy shows structure
• Almost always strictly binary, 

unlike example here
• Packages data nicely for 

manipulation
– e.g., if we know values of y and 

z, can simplify the “*” node in 
lower right to a constant
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Binary Trees

• Max of two children per node; very common in 
computer science

• Minimum depth: approx. log N

• Maximum depth: N-1
– Basically a linked list

• Our hope is to keep the depth well below O(N), so 
that we can make operations asymptotically more 
efficient than they would be with a list
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Binary Search Trees

• Value in every node is:
– greater than all nodes in left subtree

– less than all nodes in right subtree

• Duplicate values complicate things

• Operations:
– Find, FindMin, FindMax

– Insert, Remove

– traversal (maybe)
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Insert

• (assuming no duplicates)
• Do same steps as a Find
• Will eventually stop when we hit 

a NULL pointer
• That’s where it needs to go!
• Never tries to add a 3rd child—

why?
• Consider inserting 7.5, 8.5, 20 in 

example
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Remove

• More icky
• Easy if node has 0 or 1 children
• Removing interior node might 

leave 3 children (e.g. remove 5)
• Correct replacement usually not 

either child
– Want largest in left subtree or 

smallest in right subtree

• Removing that one is always easy
– Why?
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Lazy Deletion

• A “lazy” operation puts off the work as long as possible, 
usually in the hope that a future step will make the step 
unnecessary

• We can just mark removed nodes instead of actually 
reorganizing the tree
– Skip them during insert/searches
– Typically do the work when real nodes fall below a certain 

percentage
– If tree is 50% deleted nodes, what is the extra cost of operations?

• Could also do this for lists
• To get the best benefit, modify Insert to reuse the marked 

nodes when possible
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Array Implementation (?)

• We said at start that trees are for non-linear data
• There is a trick, often used with complete binary 

trees
– A complete tree is one that has no gaps when you read 

the nodes left-to-right, top-to-bottom

• Use that left-to-right scan to impose a linear order 
on the nodes

• Simple formulas allow us to map between the two
– Children of A[i] are A[2i + 1], A[2i + 2]
– Obviously, need some way to tell when a cell is empty

• When applicable, a very efficient method
– Very inefficient for non-complete trees. Why?
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BST Analysis

• Most ops are O(d), where d is tree depth

• Recall that log N <= d < N

• Quite a spread...not as good as we’d hoped

build tree (N inserts)

remove

insert

find

avgworstbestoperation
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Balance

• The problem is that BSTs can get 
unbalanced, i.e. the depths of the left 
and right subtrees vary by a lot

• Many clever algorithms exist for 
maintaining balance

• Perfect balance too restrictive
– Almost no flexibility in placement

– Consider inserting 6 in example

8

5 16

4 7 12

7

6 12

4 5 8 16

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

18

AVL Trees

• For every node, heights of left and right subtrees 
can differ by no more than 1
– For efficiency, store current heights in each node

• Height will then be more or less log N (proof is a 
bit hairy, so we’ll skip it)

• Some operations remain the same (e.g. Find), so 
now worst case is O(log N)

• Some ops must change, however, mainly Insert
– Book glosses over Remove by assuming lazy deletion; 

we’ll do same
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Rotation

• An insert may cause the AVL property to be 
violated
– After insert, walk back up tree updating heights

– Stop if we hit a problem node (difference > 1)

• Since we added only 1 node, the heights 
will differ by exactly 2 if there is a problem

• Rotate around the deepest unbalanced node
– Shift up the too-deep subtree

– Shift down the too-shallow subtree

– Fixup pointers to stay binary
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Double Rotation

• A single rotation is enough to fix the tree when the 
too-deep subtree is the left-left or right-right 
grandchild of the unbalanced node

• If the left-right or right-left grandchild is the 
problem, this won’t help (consider adding 65 in 
example)

• A double rotation splits up the too-deep subtree 
(great-grandchildren) and separates the halves
– Book has good pictures, not repeated here
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Why can we do all this?

• We’re doing a lot of rearranging here. Why is it 
OK to mess with the data like this?
– For example, a sorted linked list can’t be rearranged...

• Need to distinguish between two types of structure
– Inherent in data

• numerical ordering, hierarchies, etc.

– Extra imposed by choice of data structure
• binary tree structure layered on top of linear ordered data

• We have freedom to change the latter as we please
– This can be a useful insight when you design your own 

data structures
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Inherent vs. Imposed Structure

• Our sample data only has ordering built in
– 5 < 10 < 20 < 30 < 40 < 50 < 60 < 70 < 80 < 90

• Our two trees layer a grouping on top of this
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AVL Analysis

• Ignoring deletion, insertion is the only operation 
that is different from a BST

• We’ve seen that rotation takes constant time (the 
case I didn’t show is also constant time)

• Do we have to do more rotations?
– No. Fixing the first problem node guarantees the others 

will be OK as we walk back up the tree

• Costs of AVL:
– Extra depth data in each node (as much as +40% space)
– 4 rotation cases to get right (L-L, L-R, R-L, R-R)
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Next time

• Hashing
– Read chapter 5 (skip section 5.6 in the C and C++ 

books)

• We may get to Heaps (chapter 6)

• Homework 1 due in class Friday!


