

## Why Trees?

- Lists (Queues, Stacks, arrays, etc.) represent a linear sequence
- Some data doesn't have a single linear ordering
- Moves in a game
- Organizational charts
- Family trees
- Classification hierarchies (e.g. genus/species)
- File directories



## Tree Traversal



- Postorder: children, then root - defbhimnjklgca
- Preorder: root, then children -abdefcghijmnkl
- Inorder: child, root, child
- Only really makes sense for binary trees


UW, Spring 2000
CSE 373: Data Stuctures and Algorithms

## More Tidbits



- Recursive definition: a tree is - an empty set (of nodes), or - a root with zero or more subtrees
- A tree with N nodes always has N-1 edges
- Edges are directed (parent $->$ child), but we often imply the direction by drawing parent higher up
- Two nodes have at most one path between them
- Sometimes we only put data in leaf nodes; interior nodes just there for organization
- Leaf nodes probably a different type from interior nodes
- Otherwise, leaf nodes are just nodes with no children (all NULL)

$$
\begin{array}{ll}
\text { UW, Spring 2000 } & \text { CSE 373: Data Stuctures and Algorithms } \\
\text { Pete Morcos }
\end{array}
$$

## ADT Operations



- These are very generic. If we specify more details on the tree's behavior, we can come up with a more useful set.
- Tree as a whole:
- GetRoot
- Find
- MakeEmpty
- Ops on a node, much like the ops on a list
- AddChild/RemoveChild
- NextChild/PrevChild
- Can make up more . . .

UW, Spring 2000
CSE 373: Data Structures and Algorithms
Pete Morcos


## Parent Pointers

- As we discussed with doubly linked lists, if each node contains a pointer to its parent, some ops may get easier
- Not always needed
- And, as with circularly linked lists, you might consider pointers to the root in each node - Unusual


## Application: Expression Trees

W $\rightarrow$ W $\rightarrow$ ■

- Used in most compilers $\quad(3+x+i) *(4+y * z)-7$
- No parentheses needed; tree hierarchy shows structure
- Almost always strictly binary, unlike example here
- Packages data nicely for manipulation
- e.g., if we know values of $y$ and
z, can simplify the "*" node in
lower right to a constant


UW, Spring 2000 CSE 373: Data Stuctures and Algorithms
UW, Spring 2000
CSE 373: Data Structures and Algorithms
10

## Binary Search Trees

## Insert



- (assuming no duplicates)
- Do same steps as a Find
- Will eventually stop when we hit a NULL pointer
- That's where it needs to go!
- Never tries to add a $3^{\text {rd }}$ childwhy?
- Consider inserting 7.5, 8.5, 20 in
 example


## Remove



- More icky
- Easy if node has 0 or 1 children
- Removing interior node might leave 3 children (e.g. remove 5)
- Correct replacement usually not either child
- Want largest in left subtree or smallest in right subtree

- Removing that one is always easy - Why?

UW, Spring 2000
CSE 373: Data Structures and Algorithms 13

## Lazy Deletion

- A "lazy" operation puts off the work as long as possible, usually in the hope that a future step will make the step unnecessary
- We can just mark removed nodes instead of actually reorganizing the tree
- Skip them during insert/searches
- Typically do the work when real nodes fall below a certain percentage
- If tree is $50 \%$ deleted nodes, what is the extra cost of operations?
- Could also do this for lists
- To get the best benefit, modify Insert to reuse the marked nodes when possible

UW, Spring 2000 CSE 373: Data Structures and Algorithms
14

## Array Implementation (?)

■ $\rightarrow$ W $\rightarrow$ ■

- We said at start that trees are for non-linear data
- There is a trick, often used with complete binary trees
- A complete tree is one that has no gaps when you read the nodes left-to-right, top-to-bottom
- Use that left-to-right scan to impose a linear orde on the nodes

- Simple formulas allow us to map between the two
- Children of $\mathrm{A}[\mathrm{i}]$ are $\mathrm{A}[2 \mathrm{i}+1], \mathrm{A}[2 \mathrm{i}+2]$
- Obviously, need some way to tell when a cell is empty

- Very inefficient for non-complete trees. Why?

UW, Spring 2000 CSE 373: Data Structures and Algorithms $\left.\begin{array}{c}\text { Pete Morcos }\end{array}\right) 15$
UW, Spring 2000 CSE 373: Data Structures and Algorithms $\left.\begin{array}{c}\text { Pete Morcos }\end{array}\right) 15$ ${ }^{15}$

## BST Analysis

T $\rightarrow$ W

- Most ops are $\mathrm{O}(\mathrm{d})$, where d is tree depth
- Recall that $\log \mathrm{N}<=\mathrm{d}<\mathrm{N}$

| operation | best | worst | avg |
| :--- | :--- | :--- | :--- |
| find |  |  |  |
| insert |  |  |  |
| remove |  |  |  |
| build tree (N inserts) |  |  |  |

- Quite a spread...not as good as we'd hoped

UW, Spring 2000
CSE 373: Data Structures and Algorithms

## Balance



- The problem is that BSTs can get unbalanced, i.e. the depths of the left and right subtrees vary by a lot
- Many clever algorithms exist for maintaining balance
- Perfect balance too restrictive
- Almost no flexibility in placement
- Consider inserting 6 in example

UW, Spring 2000
CSE 373: Data Structures and Algorithm
 Pele Morcos

## AVL Trees

T $\rightarrow$ W $\rightarrow$ W

- For every node, heights of left and right subtrees can differ by no more than 1
- For efficiency, store current heights in each node
- Height will then be more or less $\log \mathrm{N}$ (proof is a 20 bit hairy, so we'll skip it)
- Some operations remain the same (e.g. Find), so now worst case is $\mathrm{O}(\log \mathrm{N})$
- Some ops must change, however, mainly Insert - Book glosses over Remove by assuming lazy deletion; we'll do same

UW, Spring 2000

## Rotation

- An insert may cause the AVL property to be violated
- After insert, walk back up tree updating heights
- Stop if we hit a problem node (difference > 1)

- Since we added only 1 node, the heights 5 will differ by exactly 2 if there is a problem
- Rotate around the deepest unbalanced node
- Shift up the too-deep subtree
- Shift down the too-shallow subtree
- Fixup pointers to stay binary

UW, Spring 2000 CSE 373: Data Structures and Algorithms


Why can we do all this?


- We're doing a lot of rearranging here. Why is it OK to mess with the data like this?
- For example, a sorted linked list can't be rearranged...
- Need to distinguish between two types of structure - Inherent in data
- numerical ordering, hierarchies, etc.
- Extra imposed by choice of data structure
- binary tree structure layered on top of linear ordered data
- We have freedom to change the latter as we please
- This can be a useful insight when you design your own data structures
UW, Spring 2000 CSE 373: Data Structures and Algorithms $\begin{gathered}\text { Peet Morcos }\end{gathered}$


## Double Rotation

- A single rotation is enough to fix the tree when the too-deep subtree is the left-left or right-right grandchild of the unbalanced node
- If the left-right or right-left grandchild is the problem, this won't help (consider adding 65 in example)
- A double rotation splits up the too-deep subtree (great-grandchildren) and separates the halves
- Book has good pictures, not repeated here

UW, Spring 2000 CSE 373: Data Structures and Algorithms
$\underset{\substack{\text { CSE 373: Data Structures and Algorith } \\ \text { Pete Morcos }}}{\text {. }}$

Inherent vs. Imposed Structure
T $\rightarrow$ ■ $\rightarrow$ W

- Our sample data only has ordering built in
$-5<10<20<30<40<50<60<70<80<90$
- Our two trees layer a grouping on top of this



## Next time

$\square \rightarrow \square \rightarrow \square$

## - Hashing

- Read chapter 5 (skip section 5.6 in the C and $\mathrm{C}++$ books)
- We may get to Heaps (chapter 6)
- No. Fixing the first problem node guarantees the others will be OK as we walk back up the tree
- Costs of AVL:
- Extra depth data in each node (as much as $+40 \%$ space)
-4 rotation cases to get right (L-L, L-R, R-L, R-R)
UW, Spring 2000 CSE 373: Data Stuccures and Algorithms $\left.\begin{array}{c}\text { Pete Morcos }\end{array}\right)$
Spring 2000 CSE 373: Data Structures and Algorithms $\left.\begin{array}{c}\text { Peeie Morcos }\end{array}\right)$


## AVL Analysis

- Ignoring deletion, insertion is the only operation that is different from a BST
- We've seen that rotation takes constant time (the case I didn't show is also constant time)
- Do we have to do more rotations? Pele Morcos
- Homework 1 due in class Friday!

UW, Spring 2000

