
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Trees
book chapter 4

Pete Morcos

University of Washington

4/5/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

Why Trees?

• Lists (Queues, Stacks, arrays, etc.) represent a
linear sequence

• Some data doesn’t have a single linear ordering
– Moves in a game

– Organizational charts

– Family trees

– Classification hierarchies (e.g. genus/species)

– File directories

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Terms

– Root a

– Leaf d e f h i m n

– Parent g -> c

– Children g -> h i j k l

– Ancestors g -> c a

– Descendants g -> h i j k l m n

– Siblings e -> d f

– “Cousins” e -> g

– Path c-m -> c g j m

– Depth i -> 3

– Height max of depths

• Forest: one or more trees

D

E F

G H I J

MLK N O

P Q

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

More Tidbits

• Recursive definition: a tree is
– an empty set (of nodes), or
– a root with zero or more subtrees

• A tree with N nodes always has N-1 edges
• Edges are directed (parent -> child), but we often imply the

direction by drawing parent higher up
• Two nodes have at most one path between them
• Sometimes we only put data in leaf nodes; interior nodes

just there for organization
– Leaf nodes probably a different type from interior nodes
– Otherwise, leaf nodes are just nodes with no children (all NULL)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Tree Traversal

• Postorder: children, then root
– d e f b h i m n j k l g c a

• Preorder: root, then children
– a b d e f c g h i j m n k l

• Inorder: child, root, child
– Only really makes sense for

binary trees

D

E F

G H I J

MLK N O

P Q

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

ADT Operations

• These are very generic. If we specify more details on the
tree’s behavior, we can come up with a more useful set.

• Tree as a whole:
– GetRoot

– Find

– MakeEmpty

• Ops on a node, much like the ops on a list
– AddChild/RemoveChild

– NextChild/PrevChild

• Can make up more . . .

2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Implementing Trees

• If there is a (small) max no. of
children in each node, we can use
an array (or individual variables)
to store child pointers

• If the number is unbounded, or so
large an array would be wasteful,
we need to implement some kind
of growable list of children
– Linked list in parent

– Sibling pointers

Value

parent

child

child 1

sibling

child 2 child 3

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Parent Pointers

• As we discussed with doubly linked lists, if each
node contains a pointer to its parent, some ops
may get easier
– Not always needed

• And, as with circularly linked lists, you might
consider pointers to the root in each node
– Unusual

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Application: Expression Trees

• Used in most compilers
• No parentheses needed; tree

hierarchy shows structure
• Almost always strictly binary,

unlike example here
• Packages data nicely for

manipulation
– e.g., if we know values of y and

z, can simplify the “*” node in
lower right to a constant

-

+

7

3 x i

+

*

y

4

*

z

(3 + x + i)*(4 + y * z) - 7

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Binary Trees

• Max of two children per node; very common in
computer science

• Minimum depth: approx. log N

• Maximum depth: N-1
– Basically a linked list

• Our hope is to keep the depth well below O(N), so
that we can make operations asymptotically more
efficient than they would be with a list

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Binary Search Trees

• Value in every node is:
– greater than all nodes in left subtree

– less than all nodes in right subtree

• Duplicate values complicate things

• Operations:
– Find, FindMin, FindMax

– Insert, Remove

– traversal (maybe)

8

5 16

4 7 12

14

9

10

11

6

13 15

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

Insert

• (assuming no duplicates)
• Do same steps as a Find
• Will eventually stop when we hit

a NULL pointer
• That’s where it needs to go!
• Never tries to add a 3rd child—

why?
• Consider inserting 7.5, 8.5, 20 in

example

8

5 16

4 7 12

14

9

10

11

6

13 15

3

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

13

Remove

• More icky
• Easy if node has 0 or 1 children
• Removing interior node might

leave 3 children (e.g. remove 5)
• Correct replacement usually not

either child
– Want largest in left subtree or

smallest in right subtree

• Removing that one is always easy
– Why?

8

5 16

4 7 12

14

9

10

11

6

13 15

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

14

Lazy Deletion

• A “lazy” operation puts off the work as long as possible,
usually in the hope that a future step will make the step
unnecessary

• We can just mark removed nodes instead of actually
reorganizing the tree
– Skip them during insert/searches
– Typically do the work when real nodes fall below a certain

percentage
– If tree is 50% deleted nodes, what is the extra cost of operations?

• Could also do this for lists
• To get the best benefit, modify Insert to reuse the marked

nodes when possible

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

15

Array Implementation (?)

• We said at start that trees are for non-linear data
• There is a trick, often used with complete binary

trees
– A complete tree is one that has no gaps when you read

the nodes left-to-right, top-to-bottom

• Use that left-to-right scan to impose a linear order
on the nodes

• Simple formulas allow us to map between the two
– Children of A[i] are A[2i + 1], A[2i + 2]
– Obviously, need some way to tell when a cell is empty

• When applicable, a very efficient method
– Very inefficient for non-complete trees. Why?

8

5 16

4 7 12

8 5 16 4 7 12 ?
0 1 2 3 4 5 6

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

16

BST Analysis

• Most ops are O(d), where d is tree depth

• Recall that log N <= d < N

• Quite a spread...not as good as we’d hoped

build tree (N inserts)

remove

insert

find

avgworstbestoperation

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

17

Balance

• The problem is that BSTs can get
unbalanced, i.e. the depths of the left
and right subtrees vary by a lot

• Many clever algorithms exist for
maintaining balance

• Perfect balance too restrictive
– Almost no flexibility in placement

– Consider inserting 6 in example

8

5 16

4 7 12

7

6 12

4 5 8 16

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

18

AVL Trees

• For every node, heights of left and right subtrees
can differ by no more than 1
– For efficiency, store current heights in each node

• Height will then be more or less log N (proof is a
bit hairy, so we’ll skip it)

• Some operations remain the same (e.g. Find), so
now worst case is O(log N)

• Some ops must change, however, mainly Insert
– Book glosses over Remove by assuming lazy deletion;

we’ll do same

70

30 90

20 50 80

40

3 2

2 2 1

1

60
1

10
1

4

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

19

Rotation

• An insert may cause the AVL property to be
violated
– After insert, walk back up tree updating heights

– Stop if we hit a problem node (difference > 1)

• Since we added only 1 node, the heights
will differ by exactly 2 if there is a problem

• Rotate around the deepest unbalanced node
– Shift up the too-deep subtree

– Shift down the too-shallow subtree

– Fixup pointers to stay binary

70

30 90

20 50 80

40

4 2

3 2 1

1

60
1

10
2

5
1

70

30

90

20

50

8040

3

2

3

2

11

60
1

10
2

5

1

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

20

Double Rotation

• A single rotation is enough to fix the tree when the
too-deep subtree is the left-left or right-right
grandchild of the unbalanced node

• If the left-right or right-left grandchild is the
problem, this won’t help (consider adding 65 in
example)

• A double rotation splits up the too-deep subtree
(great-grandchildren) and separates the halves
– Book has good pictures, not repeated here

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

21

Why can we do all this?

• We’re doing a lot of rearranging here. Why is it
OK to mess with the data like this?
– For example, a sorted linked list can’t be rearranged...

• Need to distinguish between two types of structure
– Inherent in data

• numerical ordering, hierarchies, etc.

– Extra imposed by choice of data structure
• binary tree structure layered on top of linear ordered data

• We have freedom to change the latter as we please
– This can be a useful insight when you design your own

data structures
UW, Spring 2000 CSE 373: Data Structures and Algorithms

Pete Morcos
22

Inherent vs. Imposed Structure

• Our sample data only has ordering built in
– 5 < 10 < 20 < 30 < 40 < 50 < 60 < 70 < 80 < 90

• Our two trees layer a grouping on top of this

70

30 90

20 50 80

40

4 2

3 2 1

1

60
1

10
2

5
1

70

30

90

20

50

8040

3

2

3

2

11

60
1

10
2

5

1

5 10 20 30 40 50 60 70 80 90 5 10 20 30 40 50 60 70 80 90

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

23

AVL Analysis

• Ignoring deletion, insertion is the only operation
that is different from a BST

• We’ve seen that rotation takes constant time (the
case I didn’t show is also constant time)

• Do we have to do more rotations?
– No. Fixing the first problem node guarantees the others

will be OK as we walk back up the tree

• Costs of AVL:
– Extra depth data in each node (as much as +40% space)
– 4 rotation cases to get right (L-L, L-R, R-L, R-R)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

24

Next time

• Hashing
– Read chapter 5 (skip section 5.6 in the C and C++

books)

• We may get to Heaps (chapter 6)

• Homework 1 due in class Friday!

