[Exptate et e Me s e s M s Max Bax Ba e i e S ax Ba s Mas M s M Ba s Ma s M s s B e s e

CSE 373: Trees

book chapter 4

Pete Morcos
University of Washington
4/5/00

[e e e e e s e e e

Why Trees?

¢ Lists (Queues, Stacks, arrays, etc.) represent a
linear sequence

« Some data doesn’t have asingle linear ordering
— Movesin agame
— Organizational charts

O

e

— Family trees
— Classification hierarchies (e.g. genus/species)
— Filedirectories
UW, Spring 2000 CSE 373: Data Structures and Algorithms 2
Pete Morcos
More Tidbits

« Recursive definition: atreeis
— an empty set (of nodes), or
— aroot with zero or more subtrees
« A treewith N nodes always has N-1 edges
« Edgesare directed (parent -> child), but we often imply the
direction by drawing parent higher up
« Two nodes have at most one path between them
« Sometimes we only put datain leaf nodes; interior nodes
just there for organization
— Leaf nodes probably a different type from interior nodes
— Otherwise, leaf nodes are just nodes with no children (all NULL)

Terms
T (0> LT > 0 LT+ Y > T Y > T (WS T (S0
— Root a
— Leaf defhimn
— Parent g->c
— Children g->hijkl
— Ancestors g->ca
— Descendants g->hijkImn
— Siblings e->df
— “Cousins’ e->g
— Path cm->cgjm
— Depth i->3
— Height max of depths
« Forest: one or more trees
UW, Spring 2000 CSE 373: Data Structures and Algorithms 3
Pete Morcos
Tree Traversal
[EENEIa R > [0T [D - T I I I

« Postorder: children, then root
—defbhimnjklgca

* Preorder: root, then children
—abdefcghijmnkl

« |norder: child, root, child

— Only really makes sense for
binary trees

UW, Spring 2000 CSE 373: Data Structures and Algorithms 5
Pete Morcos

UW, Spring 2000 CSE 373: Data Structures and Algorithms 4
Pete Morcos
ADT Operations
v N S

« These are very generic. If we specify more details on the
tree’ s behavior, we can come up with amore useful set.
* Treeasawhole:
— GetRoot
- Find
— MakeEmpty
« Opson anode, much likethe opson alist
— AddChild/RemoveChild
— NextChild/PrevChild
¢ Canmakeupmore. ..

UW, Spring 2000 CSE 373: Data Structures and Algorithms 6
Pete Morcos

Implementing Trees Parent Pointers

. If@hereisa(small) max no. of « Aswediscussed with doubly linked lists, if each
children in each node, we can use Zaza node contains a pointer to its parent, some ops
an array (or individual variables) m e easier
to store child pointers 9

— Not aways needed

« |f the number is unbounded, or so
large an array would be wasteful,
we need to implement some kind

« And, aswith circularly linked lists, you might
consider pointers to the root in each node

of growable list of children — Unusua

— Linked list in parent

— Sibling pointers
UW, Spring 2000 CSE 373: Data Structures and Algorithms 7 UW, Spring 2000 CSE 373: Data Structures and Algorithms 8

Pete Morcos Pete Morcos
Application: Expression Trees Binary Trees

N = D+ T+ T T+ T T+ T T N = D+ T+ T T+ T T+ T T
* Used in most compilers R « Max of two children per node; very common in

computer science

* Minimum depth: approx. log N

¢ Maximum depth: N-1
— Basically alinked list

¢ Our hopeisto keep the depth well below O(N), so
that we can make operations asymptotically more
efficient than they would be with alist

* No parentheses needed; tree
hierarchy shows structure
« Almost aways strictly binary,
unlike example here
* Packages data nicely for
manipulation
— eg., if we know values of y and
z, can simplify the“*” nodein
lower right to a constant

UW, Spring 2000 CSE 373: Data Structures and Algorithms 9 UW, Spring 2000 CSE 373: Data Structures and Algorithms 10
Pete Morcos Pete Morcos
oo T OIS O T I I [T I T oo et e =]

« (assuming no duplicates)
¢ Dosame stepsasaFind

« Will eventually stop when we hit
aNULL pointer

¢ That'swhereit needs to go!

« Vaueinevery nodeis:
— greater than all nodesin left subtree
— lessthan all nodesin right subtree

« Duplicate values complicate things

¢ Operations: / (
_ Find. FindMin, FindMax * Never triesto add a 3 child—
why?
— Insert, Remove
— traversal (maybe) ¢ Consider inserting 7.5, 8.5, 20 in
example
UW, Spring 2000 CSE 373: Data Structures and Algorithms 11 UW, Spring 2000 CSE 373: Data Structures and Algorithms 12

Pete Morcos Pete Morcos

Remove

[Exptate et e Me s e s M s Max Bax Ba e i e S ax Ba s Mas M s M Ba s Ma s M s s B e s e

* Moreicky

¢ Easy if node has 0 or 1 children

« Removing interior node might
leave 3 children (e.g. remove 5)

« Correct replacement usually not
either child
— Want largest in left subtree or

smallest in right subtree

« Removing that one is aways easy

- Why?

UW, Spring 2000 CSE 373: Data Structures and Algorithms 13
Pete Morcos

Lazy Deletion

O O T O [T [T O T

[axitan et s ax e Bea M s M

* A “lazy” operation puts off the work aslong as possible,
usually in the hope that a future step will make the step
unnecessary

« We can just mark removed nodes instead of actually
reorganizing the tree

— Skip them during insert/searches
— Typically do the work when real nodes fall below a certain
percentage
— If treeis 50% deleted nodes, what is the extra cost of operations?
¢ Could aso do thisfor lists

« To get the best benefit, modify Insert to reuse the marked

nodes when possible

Array Implementation (?)

arte e e e S

eae e]

(8)

T
¢ Wesaid a start that trees are for non-linear data
« Thereisatrick, often used with complete binary

trees

— A complete tree is one that has no gaps when you read ® @
the nodes left-to-right, top-to-bottom

¢ Usethat |eft-to-right scan to impose alinear order
on the nodes ® 0©
¢ Simple formulas allow us to map between the two
— Children of A[i] are A[2i + 1], A[2i + 2] o

— Obviously, need some way to tell when a cell isempty ‘
« When applicable, avery efficient method [8]5]16]4]7]12] 2

e

UW, Spring 2000 CSE 373: Data Structures and Algorithms 1
Pete Morcos
et e et e e e]

¢ Most ops are O(d), where d is tree depth
¢ Recdll thatlogN <=d<N

operation best wor st avg
find

insert

remove
build tree (N inserts)

¢ Quite aspread...not as good as we' d hoped

UW, Spring 2000 CSE 373: Data Structures and Algorithms 16
Pete Morcos

— Very inefficient for non-complete trees. Why? 01 234 56
UW, Spring 2000 CSE 373: Data Structures and Algorithms 15
Pete Morcos
[o DI I (T T I

¢ The problem isthat BSTs can get
unbalanced, i.e. the depths of the left
and right subtrees vary by alot
« Many clever algorithms exist for
maintaining balance
 Perfect balance too restrictive
— Almost no flexibility in placement
— Consider inserting 6 in example ® @

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 17
Pete Morcos

AVL Trees

DD Y T CE M T D T AT

« For every node, heights of |eft and right subtrees
can differ by no more than 1

— For efficiency, store current heights in each node

bit hairy, so we'll skipit)

« Some operations remain the same (e.g. Find), so
now worst case is O(log N)

« Some ops must change, however, mainly Insert

— Book glosses over Remove by assuming lazy deletion;
we'll do same

UW, Spring 2000 CSE 373: Data Structures and Algorithms 18
Pete Morcos

Rotation

O

e

¢ Aninsert may cause the AVL property to be
violated :
— After insert, walk back up tree updeting heights
— Stop if we hit a problem node (difference > 1)) ‘l
Since we added only 1 node, the heights /
will differ by exactly 2 if thereisaproblem
« Rotate around the deepest unbal anced node
— Shift up the too-deep subtree
— Shift down the too-shallow subtree
— Fixup pointersto stay binary

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 19
Pete Morcos

Double Rotation

O e

« A singlerotation is enough to fix the tree when the
too-deep subtreeisthe left-left or right-right
grandchild of the unbalanced node

« |f the left-right or right-left grandchild isthe
problem, thiswon'’t help (consider adding 65 in
example)

« A double rotation splits up the too-deep subtree
(great-grandchildren) and separates the halves

— Book has good pictures, not repeated here

UW, Spring 2000 CSE 373: Data Structures and Algorithms 20
Pete Morcos

Why can we do all this?

[ax i an e s e

fa e s e e 0a a2 n s un e a2 e s S o n £ e}

« We'redoing alot of rearranging here. Why is it
OK to mess with the data like this?
— For example, a sorted linked list can’t be rearranged...
« Need to distinguish between two types of structure
— Inherent in data
» numerical ordering, hierarchies, etc.
— Extraimposed by choice of data structure
* binary tree structure layered on top of linear ordered data
* We have freedom to change the latter as we please
— Thiscan be a useful insight when you design your own

Inherent vs. Imposed Structure

[axitan et e Max Baa M s M

aeste e e e e s e M

¢ Our sample data only has ordering built in
- 5<10<20<30<40<50<60<70<80<90
« Our two trees layer a grouping on top of this

|
==t ==
]

4"5‘\(

UW, Spring 2000 CSE 373: Data Siructures and Algorithms ST 2

data structures
UW, Spring 2000 CSE 373: Data Structures and Algorithms 21
Pete Morcos
AVL Analysis

O

e

 |gnoring deletion, insertion is the only operation
that is different from aBST

« We've seen that rotation takes constant time (the
case | didn’t show is also constant time)

« Do we have to do more rotations?

— No. Fixing the first problem node guarantees the others
will be OK aswe walk back up the tree

e Costsof AVL:

— Extra depth data in each node (as much as +40% space)
— 4 rotation casesto get right (L-L, L-R, R-L, R-R)

UW, Spring 2000 CSE 373: Data Structures and Algorithms 2
Pete Morcos

Next time
« Hashing
— Read chapter 5 (skip section 5.6 in the C and C++
books)

* We may get to Heaps (chapter 6)
¢ Homework 1 duein class Friday!

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 24
Pete Morcos

