
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Hash Tables

Pete Morcos

University of Washington

4/7/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

Why Hash Tables?

• The data structures we’ve seen so far let us insert 
and find data in O(N) or O(log N) time

• In practice, programmers often find themselves 
storing data where N is around, say, 10 to 10000.
– log N is approx 3 to 14

• It would be ideal to have an O(1) algorithm
– Speed up that part of the program 3 to 14 times

• Hash tables (sort of) do this

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Abstract Model

• We can store structures in arrays
– A[3] = { “Alan Turing”, age 28, height 68” }

– A[17] = { “Charles Babbage”, age 47, height 63” }

• But need to search array to update someone’s data

• Hash tables let us effectively say
– B[“Alan Turing”] = {age 28, height 68”}

– B[“Charles Babbage”] = {age 47, height 63”}

• Given a name, we can very quickly get to the data

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

How?

• We define a hash function that converts a key (in 
the example, a string) into an integer

• Then we use the integer (called a hash code) to 
index the array
– f(“Alan Turing”) = 79

– f(“Charles Babbage”) = 109923

• Keep index within array using modulo arithmetic
– Usually part of the hash function’s definition

– e.g., if table size is 100, f(“Charles Babbage”) = 23

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Hash Functions

• For integers, could use i / table_size
– Problem if table_size is 100 and inputs are multiples of 1000

• For strings, could use sum of values of chars
– Problem if table_size is 10000 and inputs are at most 8 chars 

long—will all hash near beginning of table

• First problem addressed by using prime table size

• Second more difficult; need to pick hash functions that 
spread input keys evenly through all possible values

• Need to think about possible patterns in the data that could 
cause these problems

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Hashing Strings

• Adding up char values has problems
– Short strings may not cover whole table
– Permutations hash to same value

• “abd”, “dab”, “bda” all add up to 7

– Similar strings hash near each other
• “abc” = 6, “bbe” adds up to 7

• Try treating chars as digits in base 26
– “abd” = 1 * 26 * 26 + 2 * 26 + 4 = 732
– “bda” = 2 * 26 * 26 + 4 * 26 + 1 = 1457
– “dab” = 4 * 26 * 26 + 1 * 26 + 2 = 2732



2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Designing hash functions

• Be fast: we use hashing only because it speeds 
things up

• Hash evenly: don’t create clumps

• Avoid collisions

• Use whole table: don’t use a function that never 
hashes to some cells

• Be aware of patterns in input keys that might 
cause problems

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Collisions

• Even with a good hash function, sometimes two 
keys will hash to the same hash code

• Obviously can’t store them both in one array cell

• Two main solutions
– Chaining: use data structure in each cell to hold 

multiple values

– Probing: scan array looking for free cells

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Chaining

• Most basic way is to have each hash table cell 
hold a pointer to a linked list

• At each collision, add item to list

• When we search, after using hash code to find 
proper spot in hash table, need to use list search 
functions to scan list

• If we already have a list ADT implemented, can 
just use it here instead of writing code ourselves

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Fancier chaining

• If a list is good, a binary search tree must be 
better, right?
– O(N) reduced to O(log N)

• In practice, rarely done
– A good hash table is designed to minimize collisions, 

so not many items will be in each cell

– log N doesn’t pay off until N gets fairly big

– So, not worth the extra complexity

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Load Factor

• The ratio of number of items stored divided by 
size of table is the load factor, λ

• Average length of chained lists will be λ
• Access time is O(1) + O(λ)

– So, ideally λ is approx. 1 when we use chaining

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

Linear Probing

• At collision, scan down array one at a 
time looking for free cell

• Will always succeed until array is full
– But, as N approaches table size, insert 

time approaches O(N)

• General idea of probing is to add to 
hash function, i = 1, 2, 3, ..., until a 
free cell is found

• Linear probing has Fi = i

dog

god

foe



3

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

13

Problems with Linear Probing

• Clusters tend to form
– Any key that hashes within the cluster will take a 

while to find a free cell

– Then it will grow the cluster size, making future 
additions even costlier

• Thus, even when table is fairly empty, might 
find some inserts taking several steps to do

dog

god

foe

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

14

Quadratic Probing

• Fi = i2

• This jumps around the table more vigorously

• But, can we be sure it won’t jump around 
forever?
– If table size is prime, will eventually succeed as 

long as load factor less than 0.5

dog

pee

god

foe

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

15

About Probing

• Of course, one could define many other probing functions

• Probing is also known as open addressing, since the index 
(address) of a key is no longer a fixed number

• Must use lazy deletion with open addressing
– Why?

• Load factor must be less than 1
– If we get too many items in a table, must rehash

• Main advantage is avoids memory allocation
– Point of hashing is speed; malloc is slow

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

16

Rehashing

• Allocate a bigger table (usually twice the size)

• Copy data from old hash table to new one
– Note: We could also do this with other array-based 

ADTs when they fill up

• Unlike other ADTs, can’t do a simple copy
– Hash function depends on table size!

• So, recompute hash value for each key and put 
into new position in new table

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

17

Hash ADT

• As with other ADTs, have Insert and Remove 
operations

• Unlike other ADTs, we can’t have any searching 
or ordered enumeration

• A hash table is like a mathematical set, an 
unordered collection of elements

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

18

Purpose of Hashing

• The only reason to hash is for speed

• Consider a data set of size N, and hash table of 
size H
– Time complexity = O(N / H)

– Space complexity = O(H)

• We are trading space for time. Very common 
pattern in computer science



4

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

19

Hashing is Pragmatic

• If table size H is roughly N, then time = O(1)

• If table size H is fixed and not a function of N, then time is 
O(N/H) = O(N)
– Asymptotically the same!

• Even so, a constant speedup of, say, 1000, is very valuable 
in practice

• Hash tables extremely common in real programs

• Efficient implementation somewhat more important for 
hash tables than other ADTs since speed is the only reason 
to use one

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

20

Uses of hash tables

• Compilers store info about variables and functions, and 
need to access that info repeatedly each time the name 
appears
– name (a string) Æ info about the name

• Game programs see the same board position more than 
once due to permutations of moves. Want to avoid 
recomputing the best move.
– board state (a big structure) Æ best move

• If you have a string and need to look up something based 
on the string, you should immediately think of a hash table 
(as opposed to a bunch of string comparisons)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

21

Hashing Summary

• Ideally performs operations in O(1) time
• Only supports insert/find, no ordering of items
• Parts: table size (prime), hash function (spreads 

things out), collision strategy
• Chaining collisions allows load factors > 1
• Open addressing must have load factor < 1, but 

avoidance of malloc speeds things up
• Reason to use: speed
• Main cost: space


