[Exptate et e Me s e s M s Max Bax Ba e i e S ax Ba s Mas M s M Ba s Ma s M s s B e s e

CSE 373: Heaps (Priority Queues)

Pete Morcos
University of Washington
4/10/00

[e e e e e s e e e

What we know so far

e Lists

— If kept sorted, Insert O(N), DeleteMin O(1)

— If not, Insert O(1), DeleteMin O(N)
¢ Binary Search Trees

— Insert O(log N), FindMin O(log N), DeleteMin O(N)

« if we assume a previous FindMin, DeleteMin is O(1). why?

¢ Hash Tables

— Insert O(1), FindMin ?, DeleteMin ?

— for answer, see work by , April 2000.

YOUR NAME HERE

fa e s e e 0a a2 n s un e a2 e s S o n £ e}

UW, Spring 2000 CSE 373: Data Structures and Algorithms

Pete Morcos

Heaps

> (O (O (- [T

O

e

¢ A (binary) heap is a complete binary tree that
satisfies the heap order property.
« Every nodeis smaller thanits children
» BST: every node bigger than left child, smaller than right
¢ Thus, thetop node is always the smallest

(2) @)
® © @ ©
@O @ GICNC)

UW, Spring 2000

CSE 373: Data Structures and Algorithms.
e Morcos

The Problem

« |n some situations, we want to quickly get the
smallest (or largest) item from a group
— Emergency room patients, rated by severity
— Simulation events, ranked by when they start

* Sowewant an ADT that can efficiently perform:
— FindMin (or FindMax)
— DeleteMin
— and of course Insert

¢ ADTsinthisclass are called priority queues
— Like aqueue, but not FIFO anymore

UW, Spring 2000

O

e

CSE 373: Data Siructures and Algorithms.
e Morcos

Why not use BSTs?

[ax i an e s e

« Binary search trees look pretty good
* We can do slightly better
* Asaways, we should look at the assumptions and
requirements to see how
— BSTsmaintain a strong | eft/right ordering
— BSTsprovide efficient Find, not just FindMin
— We only need FindMin/DeleteMin
« Wecan relax the BST requirements to get a
dlightly faster data structure for our purpose

UW, Spring 2000 CSE 373: Data Structures and Algorithms

Pete Morcos

Array Implementation

O e

O O T O [T [T O T

« By requiring tree to be complete, can avoid

. (2)
use of pointers

« Recall trick mentioned before: ® ©
— Children of A[i] are A[2i], A[2i + 1]
— Keep track of size (inthis case, 6) @ @O

¢ Unlike BSTs, very easy to maintain
completeness property

— Restriction on new node placement is R)

AV
softer—either side OK [-[2[5]3[23[7]17]
0 1 2 3 4 5 6 7
UW, Spring 2000

CSE 373: Data Siructures and Algorithms.

6
e Morcos

Heap ADT Operations

e O O T O [T [T O T

¢ Insert(Heap H, ElementType N)

¢ ElementType FindMin(Heap H)

¢ ElementType DeleteMin(Heap H)

« note: no ops to scan through heap; only min

UW, Spring 2000 CSE 373: Data Structures and Algorithms 7
Pete Morcos

DeleteMin cont’d

fa e e e 00a a2 s ¥ un e a2 e s S o s e}

[axta e e e s M

MR nes:

_
C Rl =Rl e == m]o]]
TE ST eT e TN TD

UW, Spring 2000 CSE 373: Data Structures and Algorithms 9
Pete Morcos
H
Insert cont’d
- o U

¢ Consider inserting 1

¢ Can'tgoin array slot #13, so
dlide down 81 (from slot #6)

e Can'tgoindot #6, so dlide
down 5 (from dlot #3)

¢ Can'tgoindot #3, so dide
down 2 (from dlot #1)

* Done

— need atest for top of array...

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 1
Pete Morcos

y v S s
[(EELEEFREEEEEL
T1:3 456785 0N

[axitan et s ax e Bea M s M

DeleteMin

O O T O [T [T O T

Remove top node
We don't just replace with smallest
child—could violate completeness
— Consider shifting up 3, then 7, then 11
Heap will be 1 node smaller, so we
know that last slot will empty out
So, steps are:
— move last item to top (guarantees that

heap property is maintained)
) ’ e —
— thenalow it to percolatedown toits [R5 [&]7 [a[s =]z]u]=[=]]
T3 4567 NTE

natural position ot

UW, Spring 2000 CSE 373: Data Structures and Algorithms 8
Pete Morcos
oo et e eaa==a=tae]

Aswith DeleteMin, can’t start
from top and work our way
down
Steps:
— Create new hole at end of array
— If item can legally go there, done
— Else, dide parent down

— Repeat checks recursively
[Tzlz]s[=]7]e s]2][u]2os] - |
S AR R Rk E kT
UW, Spring 2000 CSE 373: Data Structures and Algorithms 10
Pete Morcos
Sentinel Values
[k
[EERCE i T T I T T T T I I T

« Atevery step, have to do 2 tests

« If we put avery negative number in

« Second test automatically stops at top
« A fasedatavalue used as amarker is 1) © @ @)

— Areweat top?
— Isinserted item > than parent?

slot 0, then can skip first test

known as a sentinel
— Usually used for efficiency
— Subtle, so comment your code!

L 4
ELGEEEEEER R
T r T ET s oW T

UW, Spring 2000 CSE 373: Data Structures and Algorithms 12

Pete Morcos

Heap ADT Analysis Optional Operations

* Space: O(N) _ « Although heaps are defined to hide all values but
— (sort of): need to over-allocate space (typical for arrays) the minimum, sometimes useful to be ableto
— Just need one extra variable to keep track of size .
— Efficient: really only uses N + 2 space (pointers would be 3N + 1) mOdIfy any node.
« Insert: O(log N) * DecreaseKey — lower value of (any) node
« DeleteMin: O(log N) — Need a PercolateUp routine to dide node to right place
 FindMin: O(1) ¢ IncreaseKey —raise value of (any) node
¢ BuildHeap (i.e. from N inputs) — PercolateDown
— SinceInsert islog N, might expect O(N log N) . _
— Actually only takes O(N) [see book] Delete—delete (any) hOde .
« Treat input array as a heap, then “fixup” by percolating down non-leaves - Dech%Key by mf'n't)’x then do DeleteMin
UW, Spring 2000 CSE 373: Data Structures and Algorithms 13 UW, Spring 2000 CSE 373: Data Structures and Algorithms 14
Pete Morcos Pete Morcos
MaxHeaps d-Heaps
* Our heap definition has been defined around » The heap we' ve been talking about is abinary
minimum values—a MinHeap heap, and is the most common
 Cantrivially change to use maximums instead * A d-heap has d children per node
— DeleteMax instead of DeleteMin * 3-heap shown: children of i are 3i-1, 3i, 3i+1
— Heap order property: parent greater than children « Shallower: log, N instead of log, N
, i i - 10Gq 2 ()
¢ Can't easily support both DeleteMin and « But, more children at each node
DeleteMax . — d-1 comparesto find smallest © ©
— How long would DeleteMax take on a MinHeap?
@U@ @6 @
UW, Spring 2000 CSE 373: Data Structures and Algorithms 15 UW, Spring 2000 CSE 373: Data Structures and Algorithms 16
Priority Queues Binomial Queues
« A (min/max/d-)heap isjust onekind of priority * InaBQ, asat of dataof sizeN isdivided into a
Queue forest of binomial trees
+ Recall that aPQissimply an ADT that provides a « Each binomial tree has the heap order property

DeleteMin operation (and Insert of course)

 Can design other data structurs besides heaps to do
this efficiently. Book presents 3 alternatives

* Big advantage is that they can efficiently perform

— Thus, overal minimum is at the top of one of the trees

« Merging two BQs is broken down into individual
mergers of the binomial trees, which turns out to

aMerge of two PQs, unlike heaps be easy dueto their structure
« Wewill briefly discuss one, binomial queues
UW, Spring 2000 CSE 373: Data Structures and Algorithms 17 UW, Spring 2000 CSE 373: Data Structures and Algorithms 18

Pete Morcos Pete Morcos

Binomial Trees
¢ Can have various binomial trees B;

— B, has2' nodes

— Restricted structure meansthere is only one possible B;
¢ Defined recursively

— Byisasingle node

— By isaB,_, with another B, , attached to root

UW, Spring 2000 CSE373: Daa aruauraam Algorithms

O

e

Operations
¢ FindMin scans all trees—at most log N of them.

* Merge: smply add the trees of the same sizein
each forest. Since B, ,; isjust two B’ s attached
together, merging two B,’sis easy.

[ax i an e s

e

v
@
B, B, B,
luw, Spring 2000 CSE 373 Data Igorithms

Pete Morcos

Insert, DeleteMin

O O T O [T [T O T

¢ Toinsert, trem new node as a 1-node BQ, then
merge with existing BQ
« For DeleteMin:
— First find smallest root, tree B,
— Remove B, from the BQ
— Remove oot of B, creating forest B, ,, By, ... , By, By
— Merge that forest with remainder of original
@) ©

® @

B2

O

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

A Binomial Queueisa Forest

O e

> (O (O (- [T

¢ Any number N can be written as a sum of powers
of two

— That's the whole idea of binary numbers

» Each binomial tree has size 2/, so a unique set of
trees is necessary to hold N nodes

¢ Example: N = 13 (binary 1011)
@)

B, B, B, B,

UW, Spring 2000 CSE 373: Data Structures and Algorithms

Mer ge
« To merge, larger root becomes child of smaller root.
* Merging the two By's creates anew B,.
« Merging original B, with new one createsa B,
« Merging the B, and B groupsistrivial
 Final binomial queue has aB, and B; 12 nodes total.

luw, Spring 2000 CSE 373 Data Igorithms

Pete Morcos

Priority Queue Summary

O e

> (O (O (- [T

« |f theminimum node in a set is the only onewe
care about, can use simpler ADT than aBST

¢ Binary heap is most common

« All opsare O(log N) worst case

« Merging heapsis not efficient, so alternatives like
binomial queues can be devised

¢ Priority Queues useful when things like priority,
time order, or repeated minimum searches are
needed

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 24
Pete Morcos

