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The Problem

• In some situations, we want to quickly get the 
smallest (or largest) item from a group
– Emergency room patients, rated by severity
– Simulation events, ranked by when they start

• So we want an ADT that can efficiently perform:
– FindMin (or FindMax)
– DeleteMin
– and of course Insert

• ADTs in this class are called priority queues
– Like a queue, but not FIFO anymore
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What we know so far

• Lists
– If kept sorted, Insert O(N), DeleteMin O(1)

– If not, Insert O(1), DeleteMin O(N)

• Binary Search Trees
– Insert O(log N), FindMin O(log N), DeleteMin O(N)

• if we assume a previous FindMin, DeleteMin is O(1).  why?

• Hash Tables
– Insert O(1), FindMin ?, DeleteMin ?

– for answer, see work by _________, April 2000.
YOUR NAME HERE
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Why not use BSTs?

• Binary search trees look pretty good

• We can do slightly better

• As always, we should look at the assumptions and 
requirements to see how
– BSTs maintain a strong left/right ordering

– BSTs provide efficient Find, not just FindMin

– We only need FindMin/DeleteMin

• We can relax the BST requirements to get a 
slightly faster data structure for our purpose
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Heaps

• A (binary) heap is a complete binary tree that 
satisfies the heap order property.

• Every node is smaller than its children
• BST: every node bigger than left child, smaller than right

• Thus, the top node is always the smallest
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Array Implementation

• By requiring tree to be complete, can avoid 
use of pointers

• Recall trick mentioned before:
– Children of A[i] are A[2i], A[2i + 1]

– Keep track of size (in this case, 6)

• Unlike BSTs, very easy to maintain 
completeness property
– Restriction on new node placement is

softer—either side OK
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Heap ADT Operations

• Insert(Heap H, ElementType N)

• ElementType FindMin(Heap H)

• ElementType DeleteMin(Heap H)

• note: no ops to scan through heap; only min
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DeleteMin

• Remove top node

• We don’t just replace with smallest 
child—could violate completeness
– Consider shifting up 3, then 7, then 11

• Heap will be 1 node smaller, so we 
know that last slot will empty out

• So, steps are:
– move last item to top (guarantees that 

heap property is maintained)

– then allow it to percolate down to its 
natural position
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DeleteMin cont’d
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Insert

• As with DeleteMin, can’t start 
from top and work our way 
down

• Steps:
– Create new hole at end of array

– If item can legally go there, done

– Else, slide parent down

– Repeat checks recursively
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Insert cont’d

• Consider inserting 1
• Can’t go in array slot #13, so 

slide down 81 (from slot #6)
• Can’t go in slot #6, so slide 

down 5 (from slot #3)
• Can’t go in slot #3, so slide 

down 2 (from slot #1)
• Done

– need a test for top of array...
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Sentinel Values

• At every step, have to do 2 tests
– Are we at top?

– Is inserted item > than parent?

• If we put a very negative number in 
slot 0, then can skip first test

• Second test automatically stops at top

• A false data value used as a marker is 
known as a sentinel
– Usually used for efficiency

– Subtle, so comment your code!
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Heap ADT Analysis

• Space: O(N)
– (sort of): need to over-allocate space (typical for arrays)

– Just need one extra variable to keep track of size

– Efficient: really only uses N + 2 space (pointers would be 3N + 1)

• Insert: O(log N)

• DeleteMin: O(log N)

• FindMin: O(1)

• BuildHeap (i.e. from N inputs)
– Since Insert is log N, might expect O(N log N)

– Actually only takes O(N) [see book]
• Treat input array as a heap, then “fixup” by percolating down non-leaves
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Optional Operations

• Although heaps are defined to hide all values but 
the minimum, sometimes useful to be able to 
modify any node.

• DecreaseKey – lower value of (any) node
– Need a PercolateUp routine to slide node to right place

• IncreaseKey – raise value of (any) node
– PercolateDown

• Delete – delete (any) node
– DecreaseKey by infinity, then do DeleteMin
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MaxHeaps

• Our heap definition has been defined around 
minimum values—a MinHeap

• Can trivially change to use maximums instead
– DeleteMax instead of DeleteMin

– Heap order property: parent greater than children

• Can’t easily support both DeleteMin and 
DeleteMax
– How long would DeleteMax take on a MinHeap?
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d-Heaps

• The heap we’ve been talking about is a binary 
heap, and is the most common

• A d-heap has d children per node

• 3-heap shown: children of i are 3i-1, 3i, 3i+1

• Shallower: logd N instead of log2 N

• But, more children at each node
– d-1 compares to find smallest
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Priority Queues

• A (min/max/d-)heap is just one kind of priority 
queue

• Recall that a PQ is simply an ADT that provides a
DeleteMin operation (and Insert of course)

• Can design other data structurs besides heaps to do 
this efficiently. Book presents 3 alternatives

• Big advantage is that they can efficiently perform 
a Merge of two PQs, unlike heaps

• We will briefly discuss one, binomial queues
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Binomial Queues

• In a BQ, a set of data of size N is divided into a 
forest of binomial trees

• Each binomial tree has the heap order property
– Thus, overall minimum is at the top of one of the trees

• Merging two BQs is broken down into individual 
mergers of the binomial trees, which turns out to 
be easy due to their structure
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Binomial Trees

• Can have various binomial trees Bi

– Bi has 2i nodes

– Restricted structure means there is only one possible Bi

• Defined recursively
– B0 is a single node

– Bk is a Bk-1 with another Bk-1 attached to root

B0
B1 B2 B3
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A Binomial Queue is a Forest

• Any number N can be written as a sum of powers 
of two
– That’s the whole idea of binary numbers

• Each binomial tree has size 2i, so a unique set of 
trees is necessary to hold N nodes

• Example: N = 13 (binary 1011)

B0
B1 B2 B3
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Operations

• FindMin scans all trees—at most log N of them.

• Merge: simply add the trees of the same size in 
each forest. Since Bk+1 is just two Bk’s attached 
together, merging two Bk’s is easy.
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Merge

• To merge, larger root becomes child of smaller root.
• Merging the two B0’s creates a new B1.
• Merging original B1 with new one creates a B2

• Merging the B2 and B3 groups is trivial
• Final binomial queue has a B2 and B3; 12 nodes total.
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Insert, DeleteMin

• To insert, treat new node as a 1-node BQ, then 
merge with existing BQ

• For DeleteMin:
– First find smallest root, tree Bk

– Remove Bk from the BQ

– Remove root of Bk, creating forest Bk-1 , Bk-2 , ... , B1 , B0

– Merge that forest with remainder of original
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Priority Queue Summary

• If the minimum node in a set is the only one we 
care about, can use simpler ADT than a BST

• Binary heap is most common
• All ops are O(log N) worst case
• Merging heaps is not efficient, so alternatives like 

binomial queues can be devised
• Priority Queues useful when things like priority, 

time order, or repeated minimum searches are 
needed


