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A new style of tree

• B-trees are unlike the other trees we’ve seen
– Data only stored in leaves; interior nodes just for 

searching

– Each node has many children (often hundreds)
• Thus, tree is extremely shallow

• Very important in database systems

• Designed for high performance when managing 
enormous amounts of data
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Disks

• Many databases hold many gigabytes or terabytes 
(1012) of info
– Too much to fit in memory

• Disk access time is measured in ms, memory time 
in ns—about a million times slower

• When disk data is accessed, you read a whole 
page (512 bytes to a few K), not just one byte
– We’ll assume 1000 byte pages for simplicity

• The all-important goal is to reduce the number of 
disk accesses!
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Why not just use binary trees?

• Recall that in binary search trees, each node visited 
reduces search space by about one-half
– Thus, log2 N node accesses needed per search

• log2 1,000,000,000,000 is about 40
– 40 disk accesses for each piece of data is unacceptable

• Since we are going to get a whole page of data per disk 
read anyway, make nodes as big as possible
– Each node has M children
– Suppose search keys are strings up to 36 bytes
– M = 1000 / (36 + 4 [for a child pointer]) = 250
– log250 1,000,000,000,000 = 5 (as opposed to 40)

• Often, top 2 levels fit in memory, so medium size B-trees 
only have to hit the disk once (for the actual data node)
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Our simplifying assumptions

• Databases can’t use pointers in B-trees since some 
nodes will be in memory, some on disk

• We’ll assume everything fits in memory

• Some of our written problems will ask you about 
1000 byte disk pages, as on previous slide

• But most examples and homework will use what 
I’ll call a mini B-tree, with M = 4
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Example B-tree

• B-tree rules:
– All leaves at same depth, and hold sorted array of data
– Root has 2 to M children (labeled P0 to PM-1)
– Other non-leaf nodes have M/2 to M children

• Each non-leaf has up to M-1 values (k1 to kM-1); 
child Pi holds values ≥ ki; P0 holds stuff ≤ k1

• Note that values in non-leaves are not actual data!
21 48 72

12 15 25 31 41 59 84 91

1,4,8,11 12,13 15,18,19 21,24 25,26 31,38 41,43,46 48,49,50 59,68 72,78 84,88 91,92,99
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Find

• Similar to binary search trees, but now have M 
possible choices at each node—O(M) work to pick 
one, or O(log M) if we binary search the node

• Overall search time is O(log M * logM N)

21 48 72

12 15 25 31 41 59 84 91

1,4,8,11 12,13 15,18,19 21,24 25,26 31,38 41,43,46 48,49,50 59,68 72,78 84,88 91,92,99
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Insert

• Do a Find to pick the right leaf, then add to leaf
• If leaf overflows, split it into two and add new child 

to parent (e.g. inserting 45 in example)
– This might overflow parent, so repeat recursively to root
– Splitting root is only way that tree gets taller

• More sophisticated implementation would try to 
overflow into sibling leaves before making new leaf

21 48 72

25 31 41 59

21,24 25,26 31,38 41,43,46 48,49,50 59,68

21 41

25 31 59

21,24 25,26 31,38 48,49,50 59,68

41

45,4641,43

72

72
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Remove

• Remove item from leaf

• If leaf becomes empty, remove it
– optionally try stealing data from sibling leaf first

• This might cause parent to have < M/2 children
– Try stealing a value from sibling if possible

– Else, merge with a sibling—might cause next node up to be too small, 
so do this recursively

– If root drops below 2 children, delete it (tree gets shorter)

• Deletion might cause interior nodes to contain values that are 
no longer in the database (e.g. deleting 41 in example)
– Not a problem since interior nodes still valid for navigation
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Analysis of Insert/Remove

• O(logM N) steps taken (height of tree)
• Unlike Find, each step might require a 

rearrangement of a node, which is O(M) work
• Total time complexity is, then, O(M logM N)

– Can rewrite as O( [M/log M] log N )

• For large M, worse than binary search trees if 
everything is in memory, but far better if lower 
nodes would require disk accesses
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Next Week

• Sorting

• An important topic, so we’ll spend some time on it

• Read 7-7.3 and 7.5-7.6 (either book)


