

CSE 373: B-Trees

Pete Morcos
University of Washington 4/14/00
htp://www.cs:washington.edu/cducation/courses/sese373/00sp

Disks

- Many databases hold many gigabytes or terabytes (10^{12}) of info
- Too much to fit in memory
- Disk access time is measured in ms, memory time in ns-about a million times slower
- When disk data is accessed, you read a whole page (512 bytes to a few K), not just one byte - We'll assume 1000 byte pages for simplicity
- The all-important goal is to reduce the number of disk accesses!

UW, Spring 2000

$$
\begin{gathered}
\text { CSE 373: Data Structures and Algorithms } \\
\text { Pete Morcos }
\end{gathered}
$$

Our simplifying assumptions

- Databases can't use pointers in B-trees since some nodes will be in memory, some on disk
- We'll assume everything fits in memory
- Some of our written problems will ask you about 1000 byte disk pages, as on previous slide
- But most examples and homework will use what I'll call a mini B-tree, with $M=4$

A new style of tree

- B-trees are unlike the other trees we've seen
- Data only stored in leaves; interior nodes just for searching
- Each node has many children (often hundreds) - Thus, tree is extremely shallow
- Very important in database systems
- Designed for high performance when managing enormous amounts of data

UW, Spring 2000
CSE 373: Data Structures and Algorithms

Why not just use binary trees?

- Recall that in binary search trees, each node visited reduces search space by about one-half
- Thus, $\log _{2} \mathrm{~N}$ node accesses needed per search
- $\log _{2} 1,000,000,000,000$ is about 40
- 40 disk accesses for each piece of data is unacceptable
- Since we are going to get a whole page of data per disk read anyway, make nodes as big as possible
- Each node has M children
- Suppose search keys are strings up to 36 bytes
$-\mathrm{M}=1000 /(36+4$ [for a child pointer] $)=250$
- $\log _{250} 1,000,000,000,000=5$ (as opposed to 40)
- Often, top 2 levels fit in memory, so medium size B-trees only have to hit the disk once (for the actual data node)
UW, Spring 2000 CSE 373: Data Stuctures and Algorithms

Example B-tree

- B-tree rules:
- All leaves at same depth, and hold sorted array of data
- Root has 2 to M children (labeled P_{0} to $\mathrm{P}_{\mathrm{M}-1}$)
- Other non-leaf nodes have $\lceil\mathrm{M} / 2\rceil$ to M children
- Each non-leaf has up to M-1 values (k_{1} to $k_{\mathrm{M}-1}$); child P_{i} holds values $\geq k_{i} ; \mathrm{P} 0$ holds stuff $\leq k_{1}$
- Note that values in non-leaves are not actual data! $\square^{21 \mid}{ }^{48 \mid 12 \square}$

Find

- Similar to binary search trees, but now have M possible choices at each node-O(M) work to pick one, or $\mathrm{O}(\log \mathrm{M})$ if we binary search the node
- Overall search time is $\mathrm{O}\left(\log \mathrm{M} * \log _{\mathrm{M}} \mathrm{N}\right)$

Remove

为

- Remove item from leaf
- If leaf becomes empty, remove it
- optionally try stealing data from sibling leaf first
- This might cause parent to have $<\lceil\mathrm{M} / 2\rceil$ children
- Try stealing a value from sibling if possible
- Else, merge with a sibling-might cause next node up to be too small, so do this recursively
- If root drops below 2 children, delete it (tree gets shorter)
- Deletion might cause interior nodes to contain values that are no longer in the database (e.g. deleting 41 in example) - Not a problem since interior nodes still valid for navigation Uw, Spring 2000

$$
\begin{aligned}
& \text { CSE 373: Data Structures and Algorithms } \\
& \text { Pete Morcos }
\end{aligned}
$$

Next Week

$\square \rightarrow \mathbb{\square}$

- Sorting
- An important topic, so we'll spend some time on it
- Read 7-7.3 and 7.5-7.6 (either book)

Insert

- Do a Find to pick the right leaf, then add to leaf
- If leaf overflows, split it into two and add new child to parent (e.g. inserting 45 in example)
- This might overflow parent, so repeat recursively to root
- Splitting root is only way that tree gets taller
- More sophisticated implementation would try to overflow into sibling leaves before making new leaf

Analysis of Insert/Remove

- $O\left(\log _{M} N\right)$ steps taken (height of tree)
- Unlike Find, each step might require a rearrangement of a node, which is $\mathrm{O}(\mathrm{M})$ work
- Total time complexity is, then, $\mathrm{O}\left(\mathrm{M} \log _{\mathrm{M}} \mathrm{N}\right)$
- Can rewrite as $\mathrm{O}([\mathrm{M} / \log \mathrm{M}] \log \mathrm{N})$
- For large M, worse than binary search trees if everything is in memory, but far better if lower nodes would require disk accesses

UW, Spring 2000
CSE 373: Dita Structures and Algorithms

