[Exptate et e Me s e s M s Max Bax Ba e i e S ax Ba s Mas M s M Ba s Ma s M s s B e s e

A new style of tree

O e

« B-trees are unlike the other trees we've seen

— Data only stored in leaves; interior nodes just for
searching

O O T O [T [T O T

CSE 373: B-Trees

Pete Morcos Each node h hildren (often hundreds)
- . — Each node has many children (often hundreds
University of Washington * Ths, treeis extr yyshallow
4/14/00

¢ Very important in database systems

« Designed for high performance when managing
enormous amounts of data

[e e e e e s e e e

UW, Spring 2000 CSE 373: Data Structures and Algorithms 2
Pete Morcos
Disks Why not just use binary trees?
R - - - . o . . Rnie;dl that in E)Tnary searcﬁj;rm emmﬁ?ode vis'tz&
M a?zy dat.abases hold many gigabytes or terabytes reduces search space by about one-half
(10) of info — Thus, log, N node accesses needed per search
— Too much to fit in memory « log, 1,000,000,000,000 is about 40
¢ Disk accesstimeis measured in ms, memory time — 40 disk accesses for each piece of data is unacceptable
in ns—about a million times slower * Since we are going to get awhole page of data per disk
» When disk datais accessed, you read awhole read anyway, make nodes as big as possible
512 bytesto afew K), not just one byte ~ Eachrodehas M children
page (’ J_ o — Suppose search keys are strings up to 36 bytes
— We'll assume 1000 byte pages for smplicity — M =1000/ (36 + 4 [for achild pointer]) = 250
e Theall-important goal isto reduce the number of — 09,5, 1,000,000,000,000 = 5 (as opposed to 40)
disk accesses! « Often, top 2 levelsfit in memory, so medium size B-trees
only have to hit the disk once (for the actual data node)
UW, Spring 2000 CSE 373: Data Structures and Algorithms 3 UW, Spring 2000 CSE 373: Data Structures and Algorithms 4
Our simplifying assumptions Example B-tree

e B-treerules:
— All leaves at same depth, and hold sorted array of data
— Root has 2 to M children (labeled P, to Py, ,)

« Databases can't use pointersin B-trees since some
nodes will be in memory, some on disk

» We'll assume everything fitsin memory — Other non-leaf nodes have[M/2]to M children

» Some of our written problems will ask you about » Each non-leaf has up to M-1 values (k; to ky,_);
1000 byte disk pages, as on previous slide child P, holds values > k;; PO holds stuff < k;

« But most examples and homework will use what * Note that valuesin non-leaves are not actual datal

[22 Pas] 72]

I'll call amini B-tree, withM =4

EE EED 0 I

UW, Spring 2000 CSE 373: Data Structures and Algorithms 5 UW, Spring 2000 CSE 373: Data Structures and Algorithms 6
Pete Morcos Pete Morcos

Find

> (O (O (- [T

e

O

¢ Similar to binary search trees, but now have M
possible choices at each node—O(M) work to pick
one, or O(log M) if we binary search the node

* Overall searchtimeisO(log M * log,, N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms 7
Pete Morcos

Remove

[e e e e e s e e e

* Remove item from leaf
« If leaf becomes empty, remove it
— optionally try stealing data from sibling leaf first
- Thismight cause parent to have <[M/2] children
— Try stealing avalue from sibling if possible
— Else, merge with a sibling—might cause next node up to be too small,
so do this recursively
— If root drops below 2 children, delete it (tree gets shorter)
« Deletion might cause interior nodes to contain values that are
no longer in the database (e.g. deleting 41 in example)
— Not aproblem since interior nodes till valid for navigation

UW, Spring 2000 CSE 373: Data Structures and Algorithms 9
Pete Morcos

Next Week

O O T O [T [T O T

« Sorting
« Animportant topic, so we'll spend sometime on it
¢ Read 7-7.3 and 7.5-7.6 (either book)

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 1
Pete Morcos

Insert
< Do aFindto pick the right leaf, then add to leaf
« If leaf overflows, split it into two and add new child
to parent (e.g. inserting 45 in example)
— Thismight overflow parent, so repeat recursively to root
— Splitting root is only way that tree getstaller

« More sophisticated implementation would try to

overflow into sibling leaves before making new leaf
W |

UW, Spring 2000 ®.__ CSE 373: Dt Algorithms > 8
~~ Pete Morcos ’

Analysis of Insert/Remove

e fa e ae e a o e s 3 S = o n < p S}

e

¢ O(logy N) steps taken (height of tree)

¢ Unlike Find, each step might require a
rearrangement of anode, which is O(M) work

¢ Total time complexity is, then, O(M logy, N)
— Can rewriteas O([M/log M] log N)

« For large M, worse than binary search trees if
everything isin memory, but far better if lower
nodes would require disk accesses

UW, Spring 2000 CSE 373: Data Structures and Algorithms 10
Pete Morcos

