
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: B-Trees

Pete Morcos

University of Washington

4/14/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

A new style of tree

• B-trees are unlike the other trees we’ve seen
– Data only stored in leaves; interior nodes just for

searching

– Each node has many children (often hundreds)
• Thus, tree is extremely shallow

• Very important in database systems

• Designed for high performance when managing
enormous amounts of data

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Disks

• Many databases hold many gigabytes or terabytes
(1012) of info
– Too much to fit in memory

• Disk access time is measured in ms, memory time
in ns—about a million times slower

• When disk data is accessed, you read a whole
page (512 bytes to a few K), not just one byte
– We’ll assume 1000 byte pages for simplicity

• The all-important goal is to reduce the number of
disk accesses!

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

Why not just use binary trees?

• Recall that in binary search trees, each node visited
reduces search space by about one-half
– Thus, log2 N node accesses needed per search

• log2 1,000,000,000,000 is about 40
– 40 disk accesses for each piece of data is unacceptable

• Since we are going to get a whole page of data per disk
read anyway, make nodes as big as possible
– Each node has M children
– Suppose search keys are strings up to 36 bytes
– M = 1000 / (36 + 4 [for a child pointer]) = 250
– log250 1,000,000,000,000 = 5 (as opposed to 40)

• Often, top 2 levels fit in memory, so medium size B-trees
only have to hit the disk once (for the actual data node)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Our simplifying assumptions

• Databases can’t use pointers in B-trees since some
nodes will be in memory, some on disk

• We’ll assume everything fits in memory

• Some of our written problems will ask you about
1000 byte disk pages, as on previous slide

• But most examples and homework will use what
I’ll call a mini B-tree, with M = 4

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Example B-tree

• B-tree rules:
– All leaves at same depth, and hold sorted array of data
– Root has 2 to M children (labeled P0 to PM-1)
– Other non-leaf nodes have M/2 to M children

• Each non-leaf has up to M-1 values (k1 to kM-1);
child Pi holds values ≥ ki; P0 holds stuff ≤ k1

• Note that values in non-leaves are not actual data!
21 48 72

12 15 25 31 41 59 84 91

1,4,8,11 12,13 15,18,19 21,24 25,26 31,38 41,43,46 48,49,50 59,68 72,78 84,88 91,92,99

2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Find

• Similar to binary search trees, but now have M
possible choices at each node—O(M) work to pick
one, or O(log M) if we binary search the node

• Overall search time is O(log M * logM N)

21 48 72

12 15 25 31 41 59 84 91

1,4,8,11 12,13 15,18,19 21,24 25,26 31,38 41,43,46 48,49,50 59,68 72,78 84,88 91,92,99

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Insert

• Do a Find to pick the right leaf, then add to leaf
• If leaf overflows, split it into two and add new child

to parent (e.g. inserting 45 in example)
– This might overflow parent, so repeat recursively to root
– Splitting root is only way that tree gets taller

• More sophisticated implementation would try to
overflow into sibling leaves before making new leaf

21 48 72

25 31 41 59

21,24 25,26 31,38 41,43,46 48,49,50 59,68

21 41

25 31 59

21,24 25,26 31,38 48,49,50 59,68

41

45,4641,43

72

72

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Remove

• Remove item from leaf

• If leaf becomes empty, remove it
– optionally try stealing data from sibling leaf first

• This might cause parent to have < M/2 children
– Try stealing a value from sibling if possible

– Else, merge with a sibling—might cause next node up to be too small,
so do this recursively

– If root drops below 2 children, delete it (tree gets shorter)

• Deletion might cause interior nodes to contain values that are
no longer in the database (e.g. deleting 41 in example)
– Not a problem since interior nodes still valid for navigation

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Analysis of Insert/Remove

• O(logM N) steps taken (height of tree)
• Unlike Find, each step might require a

rearrangement of a node, which is O(M) work
• Total time complexity is, then, O(M logM N)

– Can rewrite as O([M/log M] log N)

• For large M, worse than binary search trees if
everything is in memory, but far better if lower
nodes would require disk accesses

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Next Week

• Sorting

• An important topic, so we’ll spend some time on it

• Read 7-7.3 and 7.5-7.6 (either book)

