CSE 373: Selection and Sorting

Pete Morcos
University of Washington 4/17/00
\qquad

W \quad W

Sorting

In principle, ife
In principle, if we do N selections, we know the sorted order of the data

- $\mathrm{O}\left(\mathrm{N}^{2}\right)$ if selection is $\mathrm{O}(\mathrm{N}), \mathrm{O}(\mathrm{N} \log \mathrm{N})$ if it's $\mathrm{O}(\log \mathrm{N})$
- This is actually how some sorting algorithms work
- Sorting is valuable in many situations
- Allows binary search of an array
- Once sorted, selections are $\mathrm{O}(1)$ [if set is contiguous]
- Detecting duplicates becomes easy
- Makes it easier to hand homework back to students

UW, Spring 2000

$$
\begin{aligned}
& \text { CSE 373: Data Stuctures and Algorithms } \\
& \text { Pete Morcos }
\end{aligned}
$$

Using Lists - Bubblesort

- We can define that a set A_{i} is "sorted" as follows:
- For any i and j, if $i<j$ then $\mathrm{A}_{i}<=\mathrm{A}_{j} \quad[27[13[1165933$
- Suppose we just consider i and $i+1$
- Repeat the following until sorted: - Scan list; for each pair out of order, swap
- Time?
- Obviously each step does $\mathrm{N}-1$ comparisons

- Items can move left at most once per step $33^{3121[3][2][65 \mid 93}$
- So up to $\mathrm{N}-1$ steps needed $=\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Let's try moving items more than 1 space per step

UW, Spring 2000
CSE 373: Data Stuctures and Algorithms

The Selection Problem

- Given a set of N integers, which one is the $k^{\text {th }}$ largest?
- Common to ask about $k=1, k=\mathrm{N}, k=\mathrm{N} / 2$ (the median)
- Also typical to want multiple, e.g. top ten
- Seems clear that it will be at least $\mathrm{O}(\mathrm{N})$ since we have to look at every element
- Obviously $\mathrm{O}(\mathrm{N})$ for $k=1$ or N
- Several of the data structures we've talked about should jump to mind

$$
\text { UW, Spring 2000 } \quad \text { CSE 373: Data Stucutures and Algorithms }
$$

Assumptions

- Data starts in an array, in any order
- A pointer-based structure might make rearrangement easier; we'll talk about that if it matters
- Large range of possible values
- e.g. all integers, all strings, etc
- We can compare any two items with \langle,$\rangle , ==$
- Known as a total ordering of the set of possible values
- Some data isn't totally ordered-is CSE 373 < BIOL 401?
- Relaxing these assumptions enables other techniques

UW, Spring 2000
CSE 373: Data Stuctures and Algorithms

Using Lists - Selection Sort

- Naive selection $(k=1)$: scan for smallest, $\mathrm{O}(\mathrm{N})$
- Sort then becomes N iterations of
- Select smallest remaining
- Remove it and add to end of separate array
- Time? N steps taking N, N-1, N-2, ... , 3, 2, 1
- Space? Need extra array, so 2 N

Using Lists - Insertion Sort

Using Trees

- We want to beat $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Suppose we use a BST
- N steps, in each we do an Insert operation
- Then, an inorder tree traversal will give us the sorted result
- Time? Each insert is a $\log \mathrm{N}$ operation, so this is an $\mathrm{O}(\mathrm{N}$ $\log \mathrm{N}$) algorithm
- Downside is that we need to separately allocate the tree (and use pointers), so roughly 3 N space
- If we knew the tree was complete, then we could use an array representation and sort in-place, which leads to...

UW, Spring 2000
CSE 373: Data Stuctures and Algorithms
Pete Morcos

Lower Bounds on Sorting

- Algorithms like bubblesort that only compare and swap adjacent elements can do no better than $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- An inversion is any pair of elements that are in the wrong order
- There are $\mathrm{N}(\mathrm{N}-1) / 2$ possible pairings of elements
- On average, half of those will be out of order (consider the reversed array to see why)
- Average and worst cases are both $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- An adjacent swap only fixes one inversion
- To do better, your algorithm must move things more than one space at a time
UW, Spring 2000 CSE 373: Data Stuctures and Algorithms 10

Shellsort

- Named after its inventor, shellsort tries to get items in rough position during early passes, then refines that by doing more specific passes
- For some increment sequence $k_{1}, k_{2}, k_{3}, \ldots, k_{i}, \ldots$
- Sort all k_{i} subsequences of elements separated by k_{i}
- Go to the next smaller increment k_{i-1} and repeat
- Proofs have been difficult since there are so many possible increment sequences
- Turns out that shellsort is N^{x}, where x might be $3 / 2,5 / 4$, $4 / 3$, etc
- This is asymptotically worse than $\mathrm{N} \log \mathrm{N}$ for any $x>1$
- In practice, works well up to moderate sizes of N

UW, Spring 2000

$$
\begin{aligned}
& \text { CSE 373: Dita Structures and Algorithms } \\
& \text { Pete Morcos }
\end{aligned}
$$

12

Shellsort Example

- Example uses the increment $\quad \mathrm{N} / 2=4^{{ }^{78[13][27|61 / 42| 93][1][65}}$ sequence Shell originally proposed: $\mathrm{N} / 2=4{ }_{\left.422 \mid 93] 11 \mid 61]^{78} \mid 13\right]^{27} \mid 65}$ $\mathrm{N} / 2, \mathrm{~N} / 4, \mathrm{~N} / 8, \ldots, 2,1$
- Seems natural, but turns out to be quite bad! $\mathrm{O}\left(\mathrm{N}^{2}\right)$
$\mathrm{N} / 4=2$

 is $\mathrm{O}\left(\mathrm{N}^{3 / 2}\right)$. Adjacent increments have no common factors
 doing an insertion sort, so $h=1$ is aplain old insertion sort
- $\mathrm{h}=1$ as last increment ensures final list is completely sorted

UW, Spring 2000 CSE 373: Data Stunctures and Algorithms

Mergesort cont'd

- To sort, recurse:
- If $\mathrm{N}=1$, array is sorted already
- If $\mathrm{N}>1$
- Divide array in half
- Recursively sort halves
- Merge halves
- Time: $\log \mathrm{N}$ subdivision levels
- Total of all subdivisions at one level is $\mathrm{O}(\mathrm{N})$
$-\mathrm{O}(\mathrm{N} \log \mathrm{N})$ total time

Mergesort

- Our first recursive algorithm, mergesort uses the divide-and-conquer strategy
- Slice the problem into smaller parts
- Independently solve the parts, then combine
- Very powerful concept in computer science
- Heart of the algorithm is the merge() function - Given two sorted arrays, make one big sorted array
- Time complexity?

$\begin{array}{lll}\text { UW, Spring 2000 } & \text { CSE 373: Data Structure and Algorithms } \\ \text { Pete Morcos }\end{array}$

Mergesort example

