CSE 373: Selection and Sorting

Pete Morcos University of Washington 4/17/00

The Selection Problem ****

<u>a</u>→a→a→a→a→a

4

- Given a set of N integers, which one is the k^{th} largest?
- Common to ask about k = 1, k = N, k = N/2 (the median)
- · Also typical to want multiple, e.g. top ten
- Seems clear that it will be at least O(N) since we have to look at every element - Obviously O(N) for k = 1 or N
- Several of the data structures we've talked about should jump to mind

UW, Spring 2000 CSE 373: Data Structures and Algorithms Pete Morcos

Sorting

13 11 42 65 3 93

11 13 42 3 65 93

11 13 3 42 65 93

11 3 13 42 65 93

3 11 13 42 65 93

- In principle, if we do N selections, we know the sorted order of the data
 - O(N²) if selection is O(N), O(N log N) if it's O(log N)
- · This is actually how some sorting algorithms work
- · Sorting is valuable in many situations
 - Allows binary search of an array

- Once sorted, selections are O(1) [if set is contiguous]
- Detecting duplicates becomes easy
- Makes it easier to hand homework back to students

UW, Spring 2000

UW, Spring 2000

CSE 373: Data Structures and Algorithms Pete Morcos

Assumptions

- +@+@+@+@+@+@+@+@
- · Data starts in an array, in any order - A pointer-based structure might make rearrangement easier; we'll talk about that if it matters
- · Large range of possible values - e.g. all integers, all strings, etc
- We can compare any two items with <, >, ==
 - Known as a total ordering of the set of possible values
 - Some data isn't totally ordered—is CSE 373 < BIOL 401?
- · Relaxing these assumptions enables other techniques

CSE 373: Data Structures and Algorithms UW, Spring 2000

Using Lists – Bubblesort

- We can define that a set A_i is "sorted" as follows: ***** 42 13 11 65 93 3
- For any *i* and *j*, if i < j then $A_i <= A_j$
- Suppose we just consider *i* and *i* + 1
- Repeat the following until sorted: - Scan list; for each pair out of order, swap
- Time? - Obviously each step does N-1 comparisons
 - Items can move left at most once per step
 - So up to N-1 steps needed => O(N²)
- · Let's try moving items more than 1 space per step

CSE 373: Data Structures and Algorithms Pate Morros

Using Lists - Selection Sort

• Naive selection (k = 1): scan for smallest, O(N)

- · Sort then becomes N iterations of
 - Select smallest remaining
- Remove it and add to end of separate array
- Time? N steps taking N, N-1, N-2, ..., 3, 2, 1
- Space? Need extra array, so 2N
- 42 13 11 65 78 93 27 61 4 53 7 42 87 24 42 91 Can avoid by swapping next item with smallest: 4 13 11 65 78 93 27 61 42 53 7 42 87 24 42 91 4 7 11 65 78 93 27 61 42 53 13 42 87 24 42 91 UW, Spring 2000 CSE 373: Data Structures and Algorithms Pete Morcos

1

Using Lists - Insertion Sort

42 13 11 65 32

42 13 11 65 32

13 42 11 65 32

11 13 42 65 32

1 13 42 65 32

- ۥ⊡৵⊞৵⊞৵⊞৵⊞৵⊞৵⊞৵⊞৵⊞৵⊞৵⊞৵⊞৵⊞৵⊞৵⊞৵⊞৵ · Avoid expensive selections
- N steps, sorts in place: - get first remaining item
 - swap left past larger items
- <mark>32</mark> 42 65 • Time? each step = select + swap - Let s = # already sorted, k = # sorted and larger than new
 - time = 1 + k

 - but k is on average s/2 • s goes from 1 to N
- · grand total is O(N2) CSE 373: Data Structure Pete More UW, Spring 2000

Using Trees

- We want to beat O(N²)
- · Suppose we use a BST
 - N steps, in each we do an Insert operation - Then, an inorder tree traversal will give us the sorted result
- · Time? Each insert is a log N operation, so this is an O(N log N) algorithm
- · Downside is that we need to separately allocate the tree (and use pointers), so roughly 3N space
- If we knew the tree was complete, then we could use an array representation and sort in-place, which leads to ...

UW, Spring 2000 CSE 373: Data Structures and Algorithms Pete Morcos

Using Heaps - Heapsort

Lower Bounds on Sorting

- · Algorithms like bubblesort that only compare and swap adjacent elements can do no better than O(N²)
 - An inversion is any pair of elements that are in the wrong order
 - There are N(N-1)/2 possible pairings of elements
 - On average, half of those will be out of order (consider the reversed array to see why)

10

12

- Average and worst cases are both O(N²)
- An adjacent swap only fixes one inversion
- To do better, your algorithm must move things more than one space at a time

CSE 373: Data Structures and Algorithms Pete Morcos UW, Spring 2000

Lower Bound on Comparison Sorting

- We assumed at the beginning that the only thing we can do to elements is compare them two at a time
- Any comparison-only sort is $\Omega(N \log N)$ - There are N! possible orderings of a list · Only one of them is sorted (if no duplicates)
 - A single comparison gives us information to cut the
 - number of possible orderings in half
 - Thus, we need log (N!) comparisons
 - Book shows that $\log (N!) = \Omega(N \log N)$

UW, Spring 2000

CSE 373: Data Structures and Algorithms Pete Morcos

11

Shellsort

- · Named after its inventor, shellsort tries to get items in rough position during early passes, then refines that by doing more specific passes
 - For some increment sequence k₁, k₂, k₃, ..., k_i

- Sort all ki subsequences of elements separated by ki
- Go to the next smaller increment k_{i-1} and repeat
- · Proofs have been difficult since there are so many possible increment sequences
- Turns out that shellsort is N^x , where x might be 3/2, 5/4, 4/3. etc
- This is asymptotically worse than N log N for any x > 1 - In practice, works well up to moderate sizes of N
- CSE 373: Data Structures and Algorithms Pete Morcos UW, Spring 2000

2

Shellsort Example

	$\rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow$	·	*****
 Example uses the sequence Shell of N/2, N/4, N/8, 	ne increment originally proposed: , 2, 1	N/2 = 4	78 13 27 61 42 93 11 65 42 93 11 61 78 13 27 65
 Seems natural, bad! O(N²) 	but turns out to be quite	N/4 = 2	42 93 11 61 78 13 27 65
 Hibbard's sequ is O(N^{3/2}). Adja no common fac 	ence, 2^{k} -1,, 15, 7, 3, 1 acent increments have ctors		11 13 27 61 42 65 78 93
 Note that within doing an insertion plain old insertion 	each color, we are on sort, so $h = 1$ is a on sort	N/8 = 1	11 13 27 42 61 65 78 93
 h = 1 as last inc is completely set 	erement ensures final list orted		
UW, Spring 2000	CSE 373: Data Structures and Algor Pete Morcos	ithms	13

Mergesort

- Our first recursive algorithm, mergesort uses the
 - divide-and-conquer strategy

...→...→...→...→...→...→...→...→...→

- Slice the problem into smaller parts
- Independently solve the parts, then combine
- Very powerful concept in computer science
- Heart of the algorithm is the merge() function
 - Given two sorted arrays, make one big sorted array

 Time completion 	xity?	
11 13 27 42 61 67 7	8 93	
4 31 32 67 69 80 8	588	93
UW, Spring 2000	CSE 373: Data Structures and Algorithms	14
	Pete Morcos	

Mergesort cont'd

- Time: log N subdivision levels
 - Total of all subdivisions at one level is O(N)
 - O(N log N) total time

UW, Spring 2000

CSE 373: Data Structures and Algorithms Pete Morcos 15

Mergesort example

