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CSE 373: Selection and Sorting
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Sorting
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« Inprinciple, if wedo N sdections, we know the
sorted order of the data
— O(N?) if selectionis O(N), O(N log N) if it's O(log N)
¢ Thisisactually how some sorting algorithms work
¢ Sorting is valuable in many situations
— Allows binary search of an array
— Once sorted, selections are O(1) [if set is contiguous]
— Detecting duplicates becomes easy
— Makesit easier to hand homework back to students
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Using Lists — Bubblesort

* Wecan definethat aset A; is“sorted” asfoll
— Foranyiandj,ifi<jthenA <= A
¢ Supposewe just consideri andi + 1
* Repeat the following until sorted:
— Scan list; for each pair out of order, swap
e Time?
— Obviously each step does N-1 comparisons
— Items can move |eft at most once per step
— S0 up to N-1 steps needed => O(N?)
¢ Let'stry moving items more than 1 space per step
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The Selection Problem
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* Givenaset of N integers, which one isthe kth
largest?

¢« Common to ask about k =1, k=N, k=N/2 (the
median)

¢ Also typical to want multiple, e.g. top ten

¢ Seems clear that it will be at least O(N) since we
have to look at every element
— Obviously O(N) fork=1or N

¢ Several of the data structures we' ve talked about
should jump to mind
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Assumptions
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¢ Datastartsin an array, in any order

— A pointer-based structure might make rearrangement
easier; we'll talk about that if it matters

¢ Largerange of possible values

— eg. al integers, all strings, etc
« We can compare any two itemswith <, >, ==

— Known as atotal ordering of the set of possible values

— Some dataisn’t totally ordered—is CSE 373 < BIOL 401?
« Relaxing these assumptions enables other techniques
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Using Lists— Selection Sort

¢ Naive selection (k = 1): scan for smallest, O(N)
¢ Sort then becomes N iterations of
— Select smallest remaining
— Remove it and add to end of separate array
¢ Time? N stepstaking N, N-1, N-2, ...,3,2,1
« Space? Need extraarray, so 2N
— Canavoid by swapping | EEEEREEE L kb
next item with smallest: mz‘ﬂ‘ 7 27l
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Using Lists— Insertion Sort
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« Avoid expensive selections [elislilee]sa
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« N steps, sortsin place: e
— get first remaining item
— swap |eft past larger items
+ Time? each step = select + swap
— Let s=# aready sorted, k = # sorted and larger than new
—time=1+k
 but k ison average §/2
* sgoesfrom1toN
« grand total is O(N?)
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Using Heaps - Heapsort
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« Basicidea:
 BuildHeap()
— Build amaxheap

DR EE R @
BEEREE g% ¢
— Do N DeleteMax steps @

« Put value in unused end of array Q@Q .
¢ Time? O(N) + N*O(log N) &

— O(N log N) isas good asit gets for @@ .
sorting, but in practice heapsort is ©
abit slower than competing sorts
(larger constant factors) @® ..
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Lower Bound on Comparison Sorting
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* We assumed at the beginning that the only thing we
can do to elements is compare them two at atime
* Any comparison-only sort is (N log N)
— Thereare N! possible orderings of alist
» Only one of them is sorted (if no duplicates)

— A single comparison gives us information to cut the
number of possible orderingsin half

— Thus, we need log (N!) comparisons
— Book shows that log (N!) = Q(N log N)
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Using Trees
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* We want to beat O(N?)
* Suppose we use aBST
— N steps, in each we do an Insert operation
— Then, an inorder tree traversa will give us the sorted result
« Time? Eachinsertisalog N operation, so thisisan O(N
log N) algorithm
« Downsideisthat we need to separately allocate the tree
(and use pointers), so roughly 3N space

« If we knew the tree was complete, then we could use an
array representation and sort in-place, which leadstto...
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Lower Bounds on Sorting
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« Algorithms like bubblesort that only compare and
swap adjacent elements can do no better than O(N?)
— Aninversionisany pair of elementsthat arein the
wrong order
— There are N(N-1)/2 possible pairings of elements

— On average, half of those will be out of order (consider
the reversed array to see why)
« Average and worst cases are both O(N?)

— An adjacent swap only fixes oneinversion
« Todo better, your algorithm must move things
more than one space at atime
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Shellsort
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« Named after itsinventor, shellsort triesto get itemsin
rough position during early passes, then refines that by
doing more specific passes

— For some increment sequence ky, ky, ks, ..., ki, ...
— Sort all k; subsequences of elements separated by k;
— Goto the next smaller increment k;_, and repeat

¢ Proofs have been difficult since there are so many possible
increment sequences

¢ Turnsout that shellsort is N*, where x might be 3/2, 5/4,
4/3, etc
— Thisisasymptotically worsethan N log N for any x > 1
— In practice, works well up to moderate sizes of N
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Shellsort Example
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* Example uses theincrement
sequence Shell originally proposed: N/2=4

N/2,N/4,N/8, ..., 2,1

— Seems natural, but turns out to be quite
bad! O(N?)

— Hibbard's sequence, 21, ..., 15,7, 3, 1
is O(N32). Adjacent increments have
no common factors

« Notethat within each color, we are
doing aninsertion sort, soh=1isa
plain old insertion sort

— h=1aslast increment ensures final list

is completely sorted
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Mergesort cont’'d
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» To sort, recurse:
— If N=1, array is sorted already
—1fN>1
« Dividearray in half
* Recursively sort halves
* Merge halves
« Time: log N subdivision levels
— Total of all subdivisionsat onelevel is O(N)
— O(N log N) total time
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Mergesort
¢ Our first recursive algorithm, mergesort uses the
divide-and-conquer strategy
— Slicethe problem into smaller parts
— Independently solve the parts, then combine
— Very powerful concept in computer science
« Heart of the algorithm is the merge( ) function
— Given two sorted arrays, make one big sorted array
— Time complexity?
Bt oS S 13 1 2 1 G i O .

UW, Spring 2000 CSE 373: Data Siructures and Algorithms. 14
Morcos

O

e

Mergesort example
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Each level
< does O(N)
work total. > O(N log N)
levels

As recursions return,
the two halves are
merged.
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