
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Selection and Sorting

Pete Morcos

University of Washington

4/17/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

The Selection Problem

• Given a set of N integers, which one is the kth

largest?
• Common to ask about k = 1, k = N, k = N/2 (the

median)
• Also typical to want multiple, e.g. top ten
• Seems clear that it will be at least O(N) since we

have to look at every element
– Obviously O(N) for k = 1 or N

• Several of the data structures we’ve talked about
should jump to mind

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Sorting

• In principle, if we do N selections, we know the
sorted order of the data
– O(N2) if selection is O(N), O(N log N) if it’s O(log N)

• This is actually how some sorting algorithms work

• Sorting is valuable in many situations
– Allows binary search of an array

– Once sorted, selections are O(1) [if set is contiguous]

– Detecting duplicates becomes easy

– Makes it easier to hand homework back to students

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

Assumptions

• Data starts in an array, in any order
– A pointer-based structure might make rearrangement

easier; we’ll talk about that if it matters

• Large range of possible values
– e.g. all integers, all strings, etc

• We can compare any two items with < , > , ==
– Known as a total ordering of the set of possible values

– Some data isn’t totally ordered—is CSE 373 < BIOL 401?

• Relaxing these assumptions enables other techniques

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Using Lists – Bubblesort

• We can define that a set Ai is “sorted” as follows:
– For any i and j, if i < j then Ai <= Aj

• Suppose we just consider i and i + 1
• Repeat the following until sorted:

– Scan list; for each pair out of order, swap

• Time?
– Obviously each step does N-1 comparisons
– Items can move left at most once per step
– So up to N-1 steps needed => O(N2)

• Let’s try moving items more than 1 space per step

42 13 11 65 93 3

13 11 42 65 3 93

11 13 42 3 65 93

11 13 3 42 65 93

11 3 13 42 65 93

3 11 13 42 65 93

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Using Lists – Selection Sort

• Naive selection (k = 1): scan for smallest, O(N)

• Sort then becomes N iterations of
– Select smallest remaining

– Remove it and add to end of separate array

• Time? N steps taking N, N-1, N-2, ... , 3, 2, 1

• Space? Need extra array, so 2N
– Can avoid by swapping

next item with smallest:

42 13 11 65 78 93 27 61 4 53 7 42

4 13 11 65 78 93 27 61 42 53 7 42

4 7 11 65 78 93 27 61 42 53 13 42

87 24 42 91

87 24 42 91

87 24 42 91

2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Using Lists – Insertion Sort

• Avoid expensive selections

• N steps, sorts in place:
– get first remaining item

– swap left past larger items

• Time? each step = select + swap
– Let s = # already sorted, k = # sorted and larger than new

– time = 1 + k
• but k is on average s/2

• s goes from 1 to N

• grand total is O(N2)

13 11 65 32

42 11 65 32

13 42 65 32

11 13 42 32

11 13 42 65

42

13

11

65

32

11 13 32 42 65

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Using Trees

• We want to beat O(N2)

• Suppose we use a BST
– N steps, in each we do an Insert operation

– Then, an inorder tree traversal will give us the sorted result

• Time? Each insert is a log N operation, so this is an O(N
log N) algorithm

• Downside is that we need to separately allocate the tree
(and use pointers), so roughly 3N space

• If we knew the tree was complete, then we could use an
array representation and sort in-place, which leads to...

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Using Heaps - Heapsort

• Basic idea:
– Build a maxheap

– Do N DeleteMax steps
• Put value in unused end of array

• Time? O(N) + N*O(log N)
– O(N log N) is as good as it gets for

sorting, but in practice heapsort is
a bit slower than competing sorts
(larger constant factors)

42 13 11 65 78 93

93 78 42 65 13 11

93

78 42

65 13 11

BuildHeap()

78 65 42 11 13 93

78

65 42

11 13 93

65 13 42 11 78 93
65

13 42

11 78 93

42 13 11 65 78 93
42

13 11

65 78 93

13 11 42 65 78 93
13

11 42

65 78 93

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Lower Bounds on Sorting

• Algorithms like bubblesort that only compare and
swap adjacent elements can do no better than O(N2)
– An inversion is any pair of elements that are in the

wrong order
– There are N(N-1)/2 possible pairings of elements
– On average, half of those will be out of order (consider

the reversed array to see why)
• Average and worst cases are both O(N2)

– An adjacent swap only fixes one inversion

• To do better, your algorithm must move things
more than one space at a time

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Lower Bound on Comparison Sorting

• We assumed at the beginning that the only thing we
can do to elements is compare them two at a time

• Any comparison-only sort is Ω(N log N)
– There are N! possible orderings of a list

• Only one of them is sorted (if no duplicates)

– A single comparison gives us information to cut the
number of possible orderings in half

– Thus, we need log (N!) comparisons

– Book shows that log (N!) = Ω(N log N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

Shellsort

• Named after its inventor, shellsort tries to get items in
rough position during early passes, then refines that by
doing more specific passes
– For some increment sequence k1, k2, k3, ..., ki, ...
– Sort all ki subsequences of elements separated by ki

– Go to the next smaller increment ki-1 and repeat

• Proofs have been difficult since there are so many possible
increment sequences

• Turns out that shellsort is Nx, where x might be 3/2, 5/4,
4/3, etc
– This is asymptotically worse than N log N for any x > 1
– In practice, works well up to moderate sizes of N

3

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

13

Shellsort Example

• Example uses the increment
sequence Shell originally proposed:
N/2, N/4, N/8, ..., 2, 1
– Seems natural, but turns out to be quite

bad! O(N2)
– Hibbard’s sequence, 2k-1, ..., 15, 7, 3, 1

is O(N3/2). Adjacent increments have
no common factors

• Note that within each color, we are
doing an insertion sort, so h = 1 is a
plain old insertion sort
– h = 1 as last increment ensures final list

is completely sorted

78 13 27 61 42 93 11 65

42 93 11 61 78 13 27 65

42 93 11 61 78 13 27 65

11 13 27 61 42 65 78 93

11 13 27 61 42 65 78 93

11 13 27 42 61 65 78 93

N/2 = 4

N/4 = 2

N/8 = 1

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

14

Mergesort

• Our first recursive algorithm, mergesort uses the
divide-and-conquer strategy
– Slice the problem into smaller parts

– Independently solve the parts, then combine

– Very powerful concept in computer science

• Heart of the algorithm is the merge() function
– Given two sorted arrays, make one big sorted array

– Time complexity?
11 13 27 42 61 67 78 93

4 31 32 67 69 80 85 88
4 11 13 27 31 32 42 61 67 69 78 80 85 88 9367

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

15

Mergesort cont’d

• To sort, recurse:
– If N = 1, array is sorted already

– If N > 1
• Divide array in half

• Recursively sort halves

• Merge halves

• Time: log N subdivision levels
– Total of all subdivisions at one level is O(N)

– O(N log N) total time

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

16

Mergesort example

53 4 7 42 87 24 42 91

53 4 7 42 87 24 42 91

53 4 7 42 87 24 42 91

4 53 7 42

53 4 7 42

87 24 42 91

24 87 42 91

4 7 42 53 24 42 87 91

4 7 24 42 42 53 87 91

Each level
does O(N)
work total. O(N log N)

levels

As recursions return,
the two halves are
merged.

