
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Disjoint Sets
book 8 – 8.5

Pete Morcos

University of Washington

4/24/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

Equivalence

• Two integers A and B are either <, >, or ==
– Only equal if they are the same

• Sometimes we care about a weaker condition than
equality, called equivalence, represented by ~

• The equivalence operator obeys the following
properties:
– Reflexive: A ~ A

– Symmetric: A ~ B means that B ~ A

– Transitive: A ~ B and B ~ C means that A ~ C

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Equivalence Classes

• Operator divides the universe into disjoint sets of
“equivalent” items

• These sets are called equivalence classes
– Electrically, A ~ B if there is a wire path between them

– On a map, A ~ B if a road runs between them

– Modulo-N divides the integers into N equivalence classes
• Example: under modulo 5, 3 ~ 8 ~ 13 ~ 18 ~ 23

– Genetically, A ~ B if they are blood-related

• Given a set of equivalent pairs, we want to figure out the
equivalence classes
– If no pairs are equivalent, there will be N classes, one per item

– Minimum of one class
UW, Spring 2000 CSE 373: Data Structures and Algorithms

Pete Morcos
4

Disjoint Set ADT

• Stores N unique items

• Divides them into E classes, 1 < E <= N
– Classes are assigned arbitrary names; e.g. “1” to “N”

• Two operations:
– Find—given an item, return the name of its equivalence

class

– Union—given the names of two equivalence classes,
merge them into one class (which may have a new,
arbitrary name)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Tradeoffs and Naive Implementations

• Make Find fast, Union slow
– Use array, with each element holding class name for that item

• e.g., if 3 ~ 5, pick 5 as class name, and A[3] == A[5] == 5

– Find is O(1), Union is O(N)

• Make Union fast, Find slow
– Use linked lists, one for each class

• Class name might be a pointer to head of list

– Union is simple list append, O(1)

– Find is a full scan of all lists, O(N)

• If we do N-1 unions (the max) and M finds, both are O(MN)
– We’ll find a way to be O(M + N) [sort of]

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Data Structure

• Use a forest with one tree per equivalence class
– Name of class is whatever item is at the root

• Unusual since we only need parent pointers
– Find follows pointers to root

• Union simply makes one tree a subtree of the
other—Finds will automatically find new root

• Since each node just has one pointer (to parent),
can use an array where each array element is the
index of the parent

2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Example

• Initally there are
N trees

• Union (7,2)
– i.e., 7 ~ 2

• Union (4,6)

• Union(4,7)

1 2 3 4 5 6 7 8 87654321

00000000

1

2

3 4 5 6 7 8
87654321

00000070

1

2

3 4 5

6

7 8
87654321

00400070

1

2

3 4 5

6 7

8
87654321

04400070

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Analysis

• Union is obviously O(1)

• Find depends on prior sequence of unions
– Worst case: 1~2, 2~3, 3~4, ... O(N)

– Best case: 1~2, 1~3, 1~4, ... O(1)

• Average case is ambiguous; what’s an average sequence of
unions?
– Any pair of classes equally likely

– Any pair of elements equally likely

– could think of others

• For M finds, N unions, worst case is O(MN)—quadratic
time

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Union-by-xxxx

• We can keep depth of trees low by always making smaller
tree a child of the larger
– Thus, each time a tree becomes a child and increases depth by one,

it at least doubles in size
– At most log N doublings possible, so Find is O(log N)

• “Smaller” is ambiguous
– Count of nodes: union-by-size
– Height of trees: union-by-height

• Simple trick allows us to keep using
array representation
– Instead of storing 0 in all roots, store negative size

• Worst case O(M log N); average O(M+N)

1

2

3 4

56 7

8

87654321

-2448-4-17-1

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Path Compression

• Common inputs still get worst case of O(M log N)
– Union operation then creates tall, skinny trees

• Modify Find to have side effects
– Make all nodes traversed on the way to the root point to

the root

• In conjunction with union-by-xxxx, a sequence of
M finds and N unions is O(M + N)
– almost...slight math complication in book; don’t worry

about it

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Path Compression Example

1

23

4

5

6 7

8

1

2

3

4

5

6 7 8

Find(8)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

Amortized Analysis

A brief introduction

• A single Find could require log N steps, even with path
compression
– Naive analysis would say it’s still O(M log N)

• However, future Finds will be faster

• Amortized analysis computes total cost for any sequence
of operations, and averages out the total
– Applied to Union/Find, works out to O(M + N)

• We may see more on amortized analysis later in the quarter

