CSE 373: Disjoint Sets book $8-8.5$

Pete Morcos
University of Washington 4/24/00
$\qquad$

## Equivalence Classes



- Operator divides the universe into disjoint sets of "equivalent" items
- These sets are called equivalence classes
- Electrically, A~B if there is a wire path between them
- On a map, A ~ B if a road runs between them
- Modulo-N divides the integers into N equivalence classes - Example: under modulo 5, $3 \sim 8 \sim 13 \sim 18 \sim 23$
- Genetically, A ~ B if they are blood-related
- Given a set of equivalent pairs, we want to figure out the equivalence classes
- If no pairs are equivalent, there will be N classes, one per item - Minimum of one class

UW, Spring 2000 CSE 373: Data Structures and Algorithms

## Tradeoffs and Naive Implementations



- Make Find fast, Union slow
- Use array, with each element holding class name for that item - e.g., if $3 \sim 5$, pick 5 as class name, and $\mathrm{A}[3]=\mathrm{A}[5]=5$ - Find is $\mathrm{O}(1)$, Union is $\mathrm{O}(\mathrm{N})$
- Make Union fast, Find slow
- Use linked lists, one for each class
- Class name might be a pointer to head of list
- Union is simple list append, $O(1)$
- Find is a full scan of all lists, $\mathrm{O}(\mathrm{N})$
- If we do $\mathrm{N}-1$ unions (the max) and M finds, both are $\mathrm{O}(\mathrm{MN})$
- We'll find a way to be $\mathrm{O}(\mathrm{M}+\mathrm{N})$ [sort of]

UW, Spring 2000 CSE 373: Data Structures and Algorithms

## Equivalence

- Two integers A and B are either <, >, or == - Only equal if they are the same
- Sometimes we care about a weaker condition than equality, called equivalence, represented by ~
- The equivalence operator obeys the following properties:
- Reflexive: A ~ A
- Symmetric: A ~ B means that B ~ A
- Transitive: A ~ B and B $\sim$ C means that A ~ C

UW, Spring 2000
CSE 373: Data Structures and Algorithms

## Disjoint Set ADT

- Stores N unique items
- Divides them into E classes, $1<\mathrm{E}<=\mathrm{N}$
- Classes are assigned arbitrary names; e.g. " 1 " to " N "
- Two operations:
- Find-given an item, return the name of its equivalence class
- Union-given the names of two equivalence classes, merge them into one class (which may have a new, arbitrary name)

UW, Spring 2000
CSE 373: Data Structures and Algorithms

## Data Structure



- Use a forest with one tree per equivalence class - Name of class is whatever item is at the root
- Unusual since we only need parent pointers - Find follows pointers to root
- Union simply makes one tree a subtree of the other-Finds will automatically find new root
- Since each node just has one pointer (to parent), can use an array where each array element is the index of the parent

UW, Spring 2000
CSE 373: Data Structures and Algorithms


## Union-by-xxxx

- We can keep depth of
an keep depth of trees low by always making smalle tree a child of the larger
- Thus, each time a tree becomes a child and increases depth by one, it at least doubles in size
At most $\log \mathrm{N}$ doublings possible, so Find is $\mathrm{O}(\log \mathrm{N})$
- "Smaller" is ambiguous
- Count of nodes: union-by-size - Height of trees: union-by-height
- Simple trick allows us to keep using array representation

- Instead of storing 0 in all roots, store negative size

UW, Spring 2000
CSE 373: Data Stuccures and Algorithms


## Path Compression Example

$\square \rightarrow \square \rightarrow \square$


UW, Spring 2000

## Analysis

- Union is obviously $\mathrm{O}(1)$
- Find depends on prior sequence of unions
- Worst case: 1~2, 2~3, 3~4, ...
$\mathrm{O}(\mathrm{N})$
- Best case: 1~2, 1~3, 1~4, ...
$\mathrm{O}(1)$
- Average case is ambiguous; what's an average sequence of unions?
- Any pair of classes equally likely
- Any pair of elements equally likely
- could think of others
- For M finds, N unions, worst case is $\mathrm{O}(\mathrm{MN})$-quadratic time

UW, Spring 2000 CSE 373: Data Structures and Algorithms

## Path Compression

Common input still get worst case of $O(M 10 g N)$

- Common inputs still get worst case of $\mathrm{O}(\mathrm{M} \log \mathrm{N})$
- Union operation then creates tall, skinny trees
- Modify Find to have side effects
- Make all nodes traversed on the way to the root point to the root
- In conjunction with union-by-xxxx, a sequence of M finds and N unions is $\mathrm{O}(\mathrm{M}+\mathrm{N})$
- almost...slight math complication in book; don't worry about it

UW, Spring 2000 CSE 373: Data Structures and Algorithms $\begin{gathered}\text { Pete Morcos }\end{gathered}$

## Amortized Analysis



## A brief introduction

- A single Find could require $\log \mathrm{N}$ steps, even with path compression
- Naive analysis would say it's still $\mathrm{O}(\mathrm{M} \log \mathrm{N})$
- However, future Finds will be faster
- Amortized analysis computes total cost for any sequence of operations, and averages out the total
- Applied to Union/Find, works out to $\mathrm{O}(\mathrm{M}+\mathrm{N})$
- We may see more on amortized analysis later in the quarter

UW, Spring 2000

