[Exptate et e Me s e s M s Max Bax Ba e i e S ax Ba s Mas M s M Ba s Ma s M s s B e s e

Equivalence

e

CSE 373: Disjoint Sets B)
books -85 * Twointegers A and B are either <, >, or ==
— Only equal if they are the same

e

O [0 [T O O

Pete Morcos * Sometimes we care about aweaker condition than
University of Washington equality, called equivalence, represented by ~
4/24/00 « The equivalence operator obeys the following
properties:

— Reflexive: A ~ A
— Symmetric: A ~B meansthat B ~ A
— Transitive: A ~B and B ~C meansthat A ~C

[e e e e e s e e e

UW, Spring 2000 CSE 373: Data Structures and Algorithms 2
Pete Morcos
Equivalence Classes Digoint Set ADT
« Operator dividesthe universeinto digoint sets of . . .
“equivalent” items St_or.es N unlqge items
 These sets are called equivalence classes * Dividestheminto E classes, 1 <E<=N

— Electrically, A ~ B if there is awire path between them
— Onamap, A ~ B if aroad runs between them
— Modulo-N divides the integersinto N equivalence classes

— Classes are assigned arbitrary names; e.g. “1” to “N”
« Two operations:

+ Example: under modulo 5, 3~ 8~ 13~ 18~ 23 — Find—given an item, return the name of its equivalence
_ Genetically, A ~ B if they are blood-related C""S _ _
«+ Given aset of equivalent pairs, we want to figure out the — Union—given the names of two equivalence classes,
equivalence classes merge them into one class (which may have anew,
— If no pairs are equivalent, there will be N classes, one per item arbitrary name)
— Minimum of one class
UW, Spring 2000 CSE 373: Data Structures and Algorithms 3 UW, Spring 2000 CSE 373: Data Structures and Algorithms 4
Pete Morcos Pete Morcos
Tradeoffs and Naive Implementations Data Structure
[EERCE i T T I I T T T T

[axitan et s ax e Bea M s M

O O T O [T [T O T

* Make Find fast, Union dow « Useaforest with one tree per equivalence class
— Usearray, with each element holding class name for that item

— Name of classiswhatever item is at the root
* eg., if 3~5, pick 5asclassname, and A[3] == A[5] ==5) i
— FindisO(1), Union is O(N) ¢ Unusual since we only need parent pointers
* Make Union fast, Find slow — Find follows pointers to root
— Uselinked lists, one for each class

(: » « Union simply makes one tree a subtree of the
° Class name might bea pointer to hesd o list other—Finds will automatically find new root

— Union issimple list append, O(1)

— Findisafull scan of all lists, O(N) .

Since each node just has one pointer (to parent),

« |f we do N-1 unions (the max) and M finds, both are O(MN) can use an array where each array element is the
— We'll find away to be O(M + N} [sort of] index of the parent

UW, Spring 2000 CSE 373: Data Structures and Algorithms 5

UW, Spring 2000 CSE 373: Data Structures and Algorithms 6
Pete Morcos Pete Morcos

Example

[Exptate et e Me s e s M s Max Bax Ba e i e S ax Ba s Mas M s M Ba s Ma s M s s B e s e

e He0eee0e
onngn @ éaeb@bcé

- ie,7~2

* Union (46) @ @ GEEERRGE
- Unona.) d) d@d@ oo T
® @

@

UW, Spring 2000 CSE 373: Data Structures and Algorithms 7
Pete Morcos

Union-by-xxxx

[axitan et e Max Baa M s M O+ (O (O (O [T - 0

« We can keep depth of trees|ow by always making smaller
tree achild of the larger

— Thus, each time atree becomes a child and increases depth by one,
it at least doubles in size

— At most log N doublings possible, so Find is O(log N)
« “Smaller” isambiguous
— Count of nodes: union-by-size

— Height of trees: union-by-height (b @ ®
« Simpletrick allows usto keep using GRO ®
array representation 2

— Instead of storing 0 in all roots, store negative size

ENamEIEIEE)
+ Worst case O(M log N); average O(M+N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms 9
Pete Morcos

Path Compression Example

[axitan et s ax e Bea M s M

@ @
®
Y m
@
®

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 1
Pete Morcos

Analysis

[axitan et s ax e Bea M s M larte e e e s e e e e e e e S

« Unionisobviously O(1)
« Find depends on prior sequence of unions

— Worgt case: 1~2, 2~3, 3+4, ... O(N)
— Best case: 1~2, 1~3, 1~4, ... 0(2)

« Average case is ambiguous; what’s an average sequence of
unions?

— Any pair of classes equally likely
— Any pair of elements equally likely
— could think of others
¢ For M finds, N unions, worst case is O(MN)—quadratic
time

UW, Spring 2000 CSE 373: Data Structures and Algorithms 8
Pete Morcos

Path Compression

[ax i an e s e

¢ Common inputs still get worst case of O(M log N)
— Union operation then creates tall, skinny trees
« Modify Find to have side effects

— Make all nodes traversed on the way to the root point to
the root

¢ In conjunction with union-by-xxxx, a sequence of
M findsand N unionsis O(M + N)
— amost...dight math complication in book; don’t worry

about it
UW, Spring 2000 CSE 373: Data Structures and Algorithms 10
Pete Morcos
Amortized Analysis

A brief introduction
¢ A single Find could requirelog N steps, even with path
compression
— Naive analysiswould say it's still O(M log N)
« However, future Finds will be faster
« Amortized analysis computes total cost for any sequence
of operations, and averages out the total
— Applied to Union/Find, worksout to O(M + N)

« We may see more on amortized analysis later in the quarter

UW, Spring 2000 CSE 373: Data Structures and Algorithms 12
Pete Morcos

