
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Midterm Review

Pete Morcos

University of Washington

4/28/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

Asymptotic Analysis

• O( f(N) ) means “no worse than, maybe better”
• Θ( f(N) ) means “basically the same, tight bound”
• Ω( f(N) ) means “no better than, maybe worse”
• All three are only true for “sufficiently large” N
• Recall formal definition:

– T(n) = O(f(n)) iff. there are positive constants c and n0
such that T(n) ≤ c · f(n) for all n ≥ n0

• Two typical ways to figure out cost of code
– Summations: used for iterative code
– Recurrences: used for recursive code

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Important Summations

N

Σ i = O(N2)
i=0

N

Σ 2i = O(2N)
i=0

log N

Σ 2i = O(N)
i=0

Example leading to above summation:

for(i=0; i<=N; i++)

for(j=0; j<i; j++)

// do constant time work

outer loop executes N times (i = 0 to N)

inner loop executes i times (j = 0 to i)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

Writing down recurrences

• Usually given an input of size N. Define T(N) as 
cost of a function call.

• Look at each line of function, and write down its 
cost.
– Only worry about cost of the line during current

function call.

• For recursive calls, don’t try to figure out cost; 
instead just write down in T form.
– Example, if recursion uses a problem of half the 

original size, its cost is T(N/2)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Lists, Stacks, Queues

• Variants
– Header nodes make pointer manipulations easier at ends of list

– Doubly linked

– Circularly linked

• Two ways to implement
– Array-based: uses minimum space, but may need to shift O(N) 

items after some operations

– Link-based: uses extra space for pointers, but rearrangements 
easier

• Array queues require slightly tricky modulo arithmetic

• Computer uses a “call stack” for all function calls—
implicit use of space

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Trees

• Some reminders
– Single node tree has height, depth of 0

– Height of a node is maximum path length to any leaf

• Recursive definition: a tree is either
– null, or

– a node with some number of trees as children

• Preorder, postorder, inorder traversals

• Depth can range from N to approx. log N 
depending on how balanced the tree is



2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Binary Trees

• Binary search trees: understand arrangement of 
values, how to do Find and Insert

• AVL trees have extra height info at each node
– Limit to how unbalanced they are

– Find just like BST

– Insert has extra rotation step to fix things up
• Triggered while we head back up the tree updating heights

• Two kinds of rotation

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

B-Trees

• Nodes have up to M children, with up to M-1 
“index values” to help with navigation
– Child to the right of index value k contains values all 

greater than or equal to k

• Leaf nodes all at same height
• Inserting may cause nodes to overfill and split, 

adding new child to parent, which may split, ...
• Removal may cause node to become less than half 

full, causing merger with sibling, which may 
cause parent to become less than half-full...

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Hash Tables

• Usually want table size prime, hash function to be highly 
variable

• Collisions can be handled in different ways
– Chaining: add extra space for pointers to linked lists of colliding 

values

– Linear Probing: scan linearly for next free item; may create 
clusters

– Quadratic Probing: scan quadratically for next free item; may fail 
if table over half-full

• Probing techniques require rehashing if table is full; 
become slow when table close to full

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Heaps

• Heaps only provide access to smallest item

• Understand the array implementation technique

• Insert/DeleteMin must maintain completeness of 
tree:
– Insert adds item to end of array, then percolate up

– DeleteMin moves item at end to top, then percolate down

• d-heap just has d children per node rather than 2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Binomial Queues

• Alternative to heaps
• Contains various Bi trees, each holding 2i nodes
• Merge:

– Join matching pairs of Bi, creating Bi+1

– Move from 0 upwards

• Insert: merge original with new single-node BQ
• DeleteMin:

– Chop off smallest root
– Treat orphans as a new BQ, merge with original BQ

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

Selection

• Want to get kth smallest item of a set

• k = N/2 (the median) is hardest case
– Naive techniques require O(k N) = O(N2)

• Quickselect is simple method that is O(N) average

• Recurrence for quickselect:
– T(N) = T(N/2) + N

– = N + N/2 + N/4 + ... + 1

– = O(N)



3

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

13

Sorting

• Bubblesort, Selection Sort, Insertion Sort
– Won’t ask questions about bubblesort

• Heapsort
– Understand trick of using right end of array to avoid 

using extra space—requires a maxheap

• Mergesort

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

14

More Sorting

• Shellsort
– Divide set into alternating colors
– Sort within a color
– Reduce the increment, causing items that used to have 

different colors to be the same
– Repeat until increment = 1

• Quicksort
– Divide-and-conquer recursion
– Partition step trickiest part
– Understand how to write the recurrence, given the code

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

15

Sorting III

• Stable sorts don’t change order of duplicates

• Bucket sort is O(N) for “small enough” N

• Radix sort is technique for sorting on hierarchical 
values (e.g. first by major, then by name) or for 
sorting by dividing values into slices


