Definition

CSE 373: Graphs

Pete Morcos
University of Washington 5/3/00
htp://www.cs:washington.edu/education/courses//cse373/00sp

Paths and Cycles

- A path is a sequence of vertices connected by edges, e.g. $b c d$ (but not $d c b$)
- Formally, a sequence $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}$, where $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right) \in \mathrm{E}$
- A simple path has no repeated vertices, except the first and last can be the same
- Path length is number of edges, i.e. n-1
- A cycle is a path that begins and ends at the same vertex (e.g. abca)
- Graphs without cycles are acyclic
- Directed acyclic graphs common, abbreviated DAG
- Sometimes we allow loop edges in graphs, e.g. (a,a) - Loops aren't cycles (i.e. cycles have length > 1)

UW, Spring 2000 CSE 373: Data Structures and Algorithms

Weighted Graphs

T \rightarrow W

- Very common to associate a numeric weight or cost to each edge in a graph
- e.g. cost of path abcd is $12+5+17$
- Path length is different from path cost - abcd has length 3, cost 34
- Could also associate costs with vertices

UW, Spring 2000 CSE 373: Data Structures and Algorithms

Connectivity

- A graph can have no edges at all...
- If any pair of nodes in an undirected graph have a path between them, the graph is connected
- In a directed graph, this is called strongly connected
- A directed graph that would be connected if the edges were undirected is called weakly connected
- Graph is complete if there is an edge between every pair of nodes

CSE 373: Data Structures and Algorithms
Pete Morcos

- A graph is a set V of vertices and E of edges
- Vertices (singular vertex) also known as nodes
- Edges in example are $(a, b),(b, c),(c, a),(c, d)$
- Edges can be directed as in example, or undirected
- Vertices a and b are adjacent if there is an edge (a, b) or (b, a) in E
$-(a, b)$ and (b, a) are the same if the graph is undirected
- Edges travelling into a vertex are incident on that vertex, those leaving are outgoing
UW, Spring 2000
CSE 373: Data Structures and Algorithms

Why Graphs?

- Useful whenever we want to express relationships between things
- Road distances between cities on a map
- Airline flight costs between airports
- Wires connecting electrical pins on a chip
- Soap opera relationships (Cliff loves Jade, Jade loves Rod, Buffy loves Angel, ...)
- Call structures in programs (main calls qsort, main calls printf, qsort calls partition, ...)
- Very, very common in computer science

UW, Spring 2000
CSE 373: Data Structures and Algorithms

Graphs vs. Other Data Structures

- Graphs can be seen as a generalized version of many structures we've seen
- Lists: directed, N-1 edges, all nodes except ends have exactly one incident and one outgoing edge
- Trees: directed, N-1 edges, all nodes except root have one incident and up to k outgoing edges
- Heaps, binomial queues, disjoint sets are also graphs

Useful Edge Properties to Know

- (Assume undirected graphs for this slide)
- A graph can have as few as 0 edges
- Let $\mathrm{N}=|\mathrm{V}|$, i.e. the number of vertices in V
- A complete, undirected graph has $\mathrm{N}(\mathrm{N}-1) / 2$ edges - Would be $\mathrm{N}^{2} / 2$ if we allowed loops
- Directed graph can have twice as many edges
- A connected graph has at least N -1 edges - If there are exactly N-1 edges then there are no cycles

UW, Spring 2000

Implementing Graphs with Lists

- Adjacency List - use array of lists
- For each vertex, a list of adjacent vertices
- Only requires $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$ space

- But takes longer to check for an edge
- How do we access array if nodes are not named with numbers?
- For undirected graphs, usually still use redundant space by storing info on both sides, for convenience
- Either representation OK, so a good reason to use ADT operations and hide the implementation

UW, Spring 2000
10

Topological Sort

$\square \rightarrow \square \rightarrow \square$

- A simple "starter" problem to get used to working with graphs
- Turns a DAG into a list $\mathrm{v}_{1} \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}$ as follows: - If there is a path from v_{i} to v_{j} in the graph, then $i<j$ - (There can't also be a path from v_{j} to v_{i}-why?)
- Example: assign numbers to CSE classes so no class has a higher-numbered prerequisite.
- Many orderings possible-most graphs only
 specify a partial order on the nodes
- e.g. 373 and 326 can appear in any order

UW, Spring 2000 CSE 373: Data Structures and Algorithms

Topological Sort Algorithm

田

- Repeat:
- Pick any node n with zero incident edges
- Let's call this an "in-degree" of zero
- There must be at least one such node if there are no cycles
- Append n to list (list is initially empty)
- Remove n and all outgoing edges from graph
- Naive impl.: first step is $\mathrm{O}(|\mathrm{V}|)$, repeated $|\mathrm{V}|$ times $=\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- Make scan more efficient by maintaining stack or queue of zero-incident nodes, and tracking in-degree for all nodes.
- Each time a node is removed, decrement in-degrees of adjacent nodes.
- Any node that drops to in-degree==0 is added to stack.
- If adjacency lists used, time is now $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

UW, Spring 2000

Topological Sort Example

BFS Shortest Path Pseudocode

W \rightarrow ■

- Use a queue to track which nodes need to be expanded
- For each node, store distance and previous node in the path curdist $=$ dist [a] $=0$
enqueue (a)
while (queue not empty)
$\mathrm{x}=$ dequeue
for each node y adjacent to x and not visited prev $[y]=x$
dist[y] = dist[x] + 1
enqueue y
- We can now use 'prev' to recover the shortest path
- Items underlined change for weighted graphs

UW, Spring 2000 CSE 373: Data Structures and Algorithms

About BFS

- BFS refers to a particular traversal order
- "Expanding circles", each one hop farther than last
- Cycles not a problem, since we track visited nodes
- Because of this traversal order, BFS is a suitable algorithm for finding the shortest path
- We know that any nodes not yet visited must be more hops from start node than all nodes seen so far
- But, BFS also used for other purposes
- BFS works fine on directed graphs as well

[^0]
Breadth-first search (BFS)

- Suppose we want to find the shortest path from node a to node b, if there is one
- Starting at node a :
- Step along each of its edges

- If b not found, step along each edge of each node you saw - Skip already-visited nodes
- Repeat, and fail when no new nodes are reachable
- If we do this over the whole graph, the visited edges form a spanning tree for the graph
- Actually, just for the part of graph reachable from a
- $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time if using adjacency lists

UW, Spring 2000 CSE 373: Data Structures and Algorithms | Pete Morcos |
| :--- |

BFS Shortest Path Example

Depth-first search (DFS)

- DFS searches down one path as far as it can go
- When no new nodes available, it backtracks
- Backtracking reveals side paths that weren't taken
- Naturally recursive, whereas BFS is naturally iterative
- You usually use DFS to scan a graph unless you specifically need the BFS traversal order
- DFS requires less bookkeeping
- BFS uses queue because its traversal doesn't follow the graph edges
- Possible to find target faster, if good branching choices made
$\begin{array}{lll}\text { UW, Spring 2000 } & \text { CSE 373: Data Stuctures and Algorithms } \\ \text { Pete Morcos }\end{array} \begin{aligned} & 18\end{aligned}$

DFS Example

DFS Pseudocode

W \rightarrow ■

- Call DFS on each vertex v in V

DFS (v)
if v is unvisited
mark v as visited

$$
\text { for each edge }(\mathrm{v}, \mathrm{w})
$$

DFS (w)

- We can use DFS to do topological sort
- At end of DFS function, prepend v to the result list

$$
\begin{array}{lll}
\text { UW, Spring 2000 } & \text { CSE 373: Data Stucucures and Algorithm } \\
\text { Pee e Morose }
\end{array} .21
$$

Dijkstra's Algorithm

- BFS shortest path doesn't work on weighted graphs - Shortest weighted path may have more hops
- Recall how BFS shortest path worked
- Each node has a path length associated
- Nodes to be expanded have shortest length seen so far
- Dijkstra's algorithm is similar; we always expand the best node seen so far
- Unlike BFS, we may update nodes we've already visited, if we find a better path to that node

[^1]
DFS Forests

- On an unconnected graph, or a weakly connected directed graph, DFS may not visit all nodes
- Solution is to repeatedly pick an unvisited node and run DFS again with that node as root
- The result is a DFS forest
- Note that in a directed graph, there may be graph edges that would connect the trees if the DFS had chosen different starting roots
- e.g. start with b, or start with d

UW, Spring 2000 CSE 373: Data Structures and Algorithms $\begin{gathered}\text { Pete Moro }\end{gathered}$

Various Graph Problems

- You've seen a couple of graph algorithms
- Topological sort
- Unweighted shortest path (using BFS)
- Now that you've seen BFS and DFS, we can discuss several more well-known graph problems
- Dijkstra's algorithm (weighted shortest path)
- Minimum spanning trees
- Prim's algorithm, Kruskal's algorithm
- Hamiltonian circuit

UW, Spring 2000
CSE 373: Data Susucures and Algorithms

- Cheapest multiple-hop airline schedule
- BFS would give minimum number of hops
- Email routing
- Vertices are computers, edges are network links
- Find routing path with smallest total link delay
- Shipping costs via multiple carriers
- etc etc etc

UW, Spring 2000

Dijkstra Example (paths from a)

Dijkstra Analysis

目

- Outer loop executes $|\mathrm{V}|$ times; body has two parts:
- Find smallest remaining-naive would be $\mathrm{O}(|\mathrm{V}|)$ scan
- Update neighbors- $\mathrm{O}(|\mathrm{E}|)$ over whole algorithm
- So, $\mathrm{O}\left(|\mathrm{E}|+|\mathrm{V}|^{2}\right)$, which is $\approx \mathrm{O}(|\mathrm{E}|)$ for dense graphs
- For sparse graphs, however, this is too slow
- Use priority queue to find smallest: DeleteMin is $\mathrm{O}(1)$
- Update neighbor is a DecreaseKey: $\mathrm{O}(\log |\mathrm{V}|)$
$-\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|+|\mathrm{V}| \log |\mathrm{V}|) \approx \mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|)$ for sparse graphs
- Only works if no edges have negative costs
- Algorithm to handle that mentioned in book, cost is $\mathrm{O}(|\mathrm{E}| *|\mathrm{~V}|)$!

UW, Spring 2000
CSE 373: Data Structures and Algorithms

Minimum Spanning Trees (MST)

- We saw that BFS and DFS will create a spanning tree for a (connected) graph
- However, there are many possible spanning trees
- Given an undirected, weighted graph, we want to construct the spanning tree with the minimum total edge cost
- Examples:
- Oil pipelines between various cities
- Cables run between outlets in a house

UW, Spring 2000 CSE 373: Data Stuctures and Algorithms

Dijkstra pseudocode

```
- Only works if no edge has a negative cost
repeat until no undone nodes
    v = undone node with shortest path
    v.done = TRUE
    for each node w adjacent to v
            if v.dist + (v,w).cost < w.dist
            update w.dist
            w.prev = v
```

- At this point, for any target node x, we can follow the 'prev' chain to compute the path from a

UW, Spring 2000 CSE 373: Data Structures and Algorithms $\begin{gathered}\text { Pete Morcos }\end{gathered} \quad 26$

Greedy Algorithms

- Dijkstra's algorithm is an example of a greedy algorithm
- Greedy algorithms always take the step that currently seems best
- No consideration of long-term or global issues
- Not always optimal or even correct
- Be happy if a greedy technique is applicable, because the shortsighted approach often results in a near-linear cost

UW, Spring 2000

28

MST: Greed is Good

- An MST satisfies an important property:
- Adding one more edge will create one cycle
- Removing any other edge from that cycle makes it a tree again
- This suggests a greedy technique
- Add an edge to the MST if you can remove a highercost edge from any cycle you create
- Two greedy algorithms are available to construct MSTs: Prim's and Kruskal's

UW, Spring 2000

MST：Prim＇s Algorithm

－Tree starts with any single node
－Add nodes to tree as follows：
－Find lowest－cost edge（ u, v ）where u is in the tree and v is not
－Don＇t want to scan all edges
－For each vertex not in tree，remember the cost and name of the nearest node in the tree，if any
－After adding a node to tree，update all adjacent nodes that aren＇t in the tree
－Almost exactly like Dijkstra＇s algorithm
UW，Spring 2000

$$
\begin{aligned}
& \text { CSE 373: Data Structures and Algorithms } \\
& \text { Pete Morcos }
\end{aligned}
$$

MST：Kruskal＇s Algorithm

－Prim added cheapest edge that was attached to the current tree
－Instead，just add cheapest edge anywhere，as long as it doesn＇t create a cycle
－During construction，we＇ll have a forest，not a single tree
－How to tell if adding (u, v) creates a cycle？
－Only if u and v are both in the same tree
－Note：no data tracked per node，unlike Prim／Dijkstra
UW，Spring 2000 CSE 373：Data Structures and Algorithms $\begin{gathered}\text { Pete Morcos }\end{gathered}$

Implementing MST

为
－Prim is just like Dijkstra，so use a priority queue if the graph is not dense
－ $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$ for sparse，or $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ for dense
－Kruskal needs to detect whether two nodes are part of the same tree
－This is a job for the union／find structure！
－Each time edge（ u, v v）is tested，reject if Find（u）$==$ Find（v）
－Otherwise do a Union（Find（u），Find（v））
－Still need a priority queue to get smallest edge
－May have to try every edge，so $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)=\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$ －In practice，not so bad
UW，Spring 2000

$$
\begin{aligned}
& \text { CSE 373: Dat Sunceures and Algorithms } \\
& \text { Peet Morocos }
\end{aligned}
$$

MST：Prim example
为相
－Start with a
－update b c d
－d closest（to a） －update cegh
－b closest（to a）
－no updates
－c closest（to d）
－update g
－h closest（to d）
－update eg
－ g closest（to h）
－e last
UW，Spring 2000

MST：Kruskal example

T
－Start with a
－$(\mathrm{a}, \mathrm{d})==1$
－$(\mathrm{g}, \mathrm{h})==1$
－$(a, b)==2$
－$(c, d)==2$
－（b，d），（a，c）
rejected
－$(d, h)==4$

－(c, g) rejected
－$(e, h)==6$

UW，Spring 2000

Hamiltonian Circuit

－A Hamiltonian circuit of a graph is a simple cycle （i．e．no repeats）that visits every node once
－Is there a Hamiltonian circuit？ －In example，yes，d a b e h g c d
－There is no known algorithm to solve this problem in polynomial time
－Not even a large polynomial，like N^{1000}

UW，Spring 2000

Solving Hamiltonian Circuit

- One way to do this is to try every possible path
- Recall that DFS marks nodes so they won't be visited more than once
- e.g. once we visit adgc, we won't touch g again
- so if we try that path, we won't find a Hamiltonian
- Modify DFS to unmark nodes when done with them, so they can be visited via other paths - e.g. we could do adgc, then abekg

UW, Spring 2000
CSE 373: Data Stuccures and Algorithms

Analyzing Exhaustive Search

- Can write all possible paths as a search tree
- If average branching factor (i.e. size of adjacency list) is B, number of paths is $O\left(B^{|\mathrm{V}|}\right)$
- Exponential time!

JW, Spring 2000

$$
\begin{aligned}
& \text { CSE 373: Data Stuccures and Algorithms } \\
& \text { Pete Morcos }
\end{aligned}
$$

39

P and NP

- Exponential is asymptotically worse than any polynomial function
- In CS theory, the set P contains all problems which can be solved in polynomial worst case time
- The set NP contains all problems for which a candidate solution can be verified in polynomial time
- e.g. given a path, test whether it's a Hamiltonian circuit - includes all of P

Exhaustive Search
Exhaustive (v)
if v is unvisited
mark v as visited
for each edge (v, w)
unmark v

- Sequence of paths tried might be:
- adgc, adgheba, adeba, adehgc, abeda, abedgc, abedcgh, abehgda, abedgh, abehgcda, abehgdc
- How many possible paths are there?

UW, Spring 2000

Exponential Time is Bad

$\begin{gathered} \log \\ \log N \end{gathered}$	$\log \mathrm{N}$	N	$\mathrm{N} \log \mathrm{N}$	N^{2}	$2^{\text {N }}$
-	0	1	-	1	2
0	1	2	2	4	4
1	2	4	8	16	16
	3	10	30	100	1024
2	7	100	700	10,000	
3	10	1,000	10,000	1,000,000	
4	20	1,000,000	20,000,000	1,000,000,000,000	momom zenest
5	30	1,000,000,000	30,000,000,000	$\begin{array}{r} 1,000,000,000, \\ 000,000,000 \end{array}$	

UW, Spring 2000

NP-completeness

- A subset of problems in NP (including the hardest ones) are known as NP-complete (NPC)
- Any problem in NP can be converted to an NPcomplete problem in polynomial time
- So, if anyone ever finds a polynomial solution to just one NP-complete problem, they're all solved! - No one has, yet
- To show that a problem Q is NPC, prove that a known NPC problem can be converted to Q in polynomial time

[^2]NP-complete problems

- Many interesting problems are NP-complete - Hamiltonian circuit
- Traveling Salesman: shortest Hamiltonian circuit
- Boolean Satisfiability
- Longest path
- Integer Partition: are there 2 subsets with same sum?
- Graph coloring: how many colors needed so no adjacent nodes have same color?
- Clique: find largest subset of vertices which are completely connected to each other
- Plenty of others occur in all branches of CS, engineering, math, science

UW, Spring 2000
CSE 373: Data Structures and Algorithms
44

Living with NP-completeness

- Many techniques have been used to get around NPC
- Dynamic programming
- Avoid repeatedly solving the same subproblems
- Very probable average case that is polynomial
- Worst case still exponential, but make it very unlikely
- Approximate solutions
- Get an answer within some tolerance of optimum
- Wimpy exponentials
- 1.00001^{N} is tolerable up to $\mathrm{N}=1,000,000$ or so

Who Cares?

- Although we won't do much in this class, it's important to know about NP-completeness
- You may find, as you design a program, that you have to solve a complex subproblem
- If you are familiar with the NP-complete problems, you can make a good guess whether yours is NPC also
- If it is, perhaps you should try another solution \odot

UW, Spring 2000
CSE 373: Data Structures and Algorithms
46

[^0]: UW, Spring 2000
 CSE 373: Data Structures and Algorithms $\begin{gathered}\text { Pete Morcos }\end{gathered}$

[^1]: UW, Spring 2000
 CSE 373: Data Structures and Algorithms

[^2]: UW, Spring 2000 CSE 373: Data Structures and Algorithms

