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Definition

• A graph is a set V of vertices and E of edges
– Vertices (singular vertex) also known as nodes
– Edges in example are (a,b), (b,c), (c,a), (c,d)
– Edges can be directed as in example,

or undirected

• Vertices a and b are adjacent if there is an 
edge (a,b) or (b,a) in E
– (a,b) and (b,a) are the same if the graph is 

undirected

• Edges travelling into a vertex are incident on 
that vertex, those leaving are outgoing
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Paths and Cycles

• A path is a sequence of vertices connected by edges, e.g.
bcd (but not dcb)
– Formally, a sequence v1...vn, where (vi,vi+1) ∈ E

– A simple path has no repeated vertices, except the first and last 
can be the same

– Path length is number of edges, i.e. n-1

• A cycle is a path that begins and ends at the same 
vertex (e.g. abca)
– Graphs without cycles are acyclic

– Directed acyclic graphs common, abbreviated DAG

• Sometimes we allow loop edges in graphs, e.g. (a,a)
– Loops aren’t cycles (i.e. cycles have length > 1)
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Connectivity

• A graph can have no edges at all...

• If any pair of nodes in an undirected 
graph have a path between them, the 
graph is connected
– In a directed graph, this is called strongly 

connected

– A directed graph that would be connected if 
the edges were undirected is called weakly 
connected

• Graph is complete if there is an edge 
between every pair of nodes
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Weighted Graphs

• Very common to associate a numeric weight
or cost to each edge in a graph
– e.g. cost of path abcd is 12+5+17

• Path length is different from path cost
– abcd has length 3, cost 34

• Could also associate costs with vertices
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Why Graphs?

• Useful whenever we want to express relationships 
between things
– Road distances between cities on a map
– Airline flight costs between airports
– Wires connecting electrical pins on a chip
– Soap opera relationships (Cliff loves Jade, Jade loves 

Rod, Buffy loves Angel, ...)
– Call structures in programs (main calls qsort, main calls 

printf, qsort calls partition, ...)

• Very, very common in computer science



2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Graphs vs. Other Data Structures

• Graphs can be seen as a generalized 
version of many structures we’ve 
seen
– Lists: directed, N-1 edges, all nodes 

except ends have exactly one incident 
and one outgoing edge

– Trees: directed, N-1 edges, all nodes 
except root have one incident and up 
to k outgoing edges

– Heaps, binomial queues, disjoint sets 
are also graphs
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Useful Edge Properties to Know

• (Assume undirected graphs for this slide)

• A graph can have as few as 0 edges

• Let N = | V |, i.e. the number of vertices in V

• A complete, undirected graph has N(N-1)/2 edges
– Would be N2/2 if we allowed loops

– Directed graph can have twice as many edges

• A connected graph has at least N-1 edges
– If there are exactly N-1 edges then there are no cycles
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Implementing Graphs with Arrays

• Adjacency Matrix – use a 2D array
– A[i][j] = 1 if (i,j) ∈ E, 0 otherwise

– For weighted graphs, use cost instead of 1

– Time to access edge is O(1)

– But space cost is O( |V|2 )
• even if |E| << |V|, known as a sparse graph

• e.g. 10,000 students, each with up to 10 friends; 
need 100M cells to hold 100,000 friendships

– For undirected graphs, note that half of array 
is redundant since A[i][j] == A[j][i]

a

b c

d

0100d

0010c

1001b

0100a

dcba

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Implementing Graphs with Lists

• Adjacency List – use array of lists
– For each vertex, a list of adjacent vertices

– Only requires O( |E| + |V| ) space

– But takes longer to check for an edge

– How do we access array if nodes are not named with 
numbers?

– For undirected graphs, usually still use redundant space 
by storing info on both sides, for convenience

• Either representation OK, so a good reason to use 
ADT operations and hide the implementation
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Topological Sort

• A simple “starter” problem to get used to 
working with graphs

• Turns a DAG into a list v1v2...vn as follows:
– If there is a path from vi to vj in the graph, then i < j

– (There can’t also be a path from vj to vi—why?)

• Example: assign numbers to CSE classes so no 
class has a higher-numbered prerequisite.

• Many orderings possible—most graphs only 
specify a partial order on the nodes
– e.g. 373 and 326 can appear in any order
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Topological Sort Algorithm

• Repeat:
– Pick any node n with zero incident edges

• Let’s call this an “in-degree” of zero
• There must be at least one such node if there are no cycles

– Append n to list (list is initially empty)
– Remove n and all outgoing edges from graph

• Naive impl.: first step is O(|V|), repeated |V| times = O(|V|2)
• Make scan more efficient by maintaining stack or queue of 

zero-incident nodes, and tracking in-degree for all nodes.
– Each time a node is removed, decrement in-degrees of adjacent nodes.
– Any node that drops to in-degree==0 is added to stack.

• If adjacency lists used, time is now O(|V| + |E|)
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Topological Sort Example

• Indegrees: a=1,b=0,c=2,d=1
– Choose b

• Indegrees: a=0, c=2, d=0
– Choose d (could choose a)

• Indegrees: a=0, c=1
– Choose a

• Indegrees: c=0
– Choose c, done
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Breadth-first search (BFS)

• Suppose we want to find the shortest path from node 
a to node b, if there is one

• Starting at node a:
– Step along each of its edges
– If b not found, step along each edge of each node you saw

• Skip already-visited nodes

– Repeat, and fail when no new nodes are reachable

• If we do this over the whole graph, the visited edges 
form a spanning tree for the graph
– Actually, just for the part of graph reachable from a

• O(|V| + |E|) time if using adjacency lists
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BFS Shortest Path Pseudocode

• Use a queue to track which nodes need to be expanded
• For each node, store distance and previous node in the path
curdist = dist[a] = 0
enqueue(a)

while (queue not empty)
x = dequeue

for each node y adjacent to x and not visited
prev[y] = x

dist[y] = dist[x] + 1
enqueue y

• We can now use ‘prev’ to recover the shortest path
• Items underlined change for weighted graphs
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BFS Shortest Path Example

• Visited: a
– Adjacent: c i

• Visited: a c i
– Adjacent: g j d

• Visited: a c i g j d
– Adjacent: h

• Visited: a c i g j d h
– Adjacent: e b
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formed by BFS:

Traversal order 
of this tree 
sometimes called 
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About BFS

• BFS refers to a particular traversal order
– “Expanding circles”, each one hop farther than last

– Cycles not a problem, since we track visited nodes

• Because of this traversal order, BFS is a suitable 
algorithm for finding the shortest path
– We know that any nodes not yet visited must be more 

hops from start node than all nodes seen so far

• But, BFS also used for other purposes

• BFS works fine on directed graphs as well
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Depth-first search (DFS)

• DFS searches down one path as far as it can go
– When no new nodes available, it backtracks

– Backtracking reveals side paths that weren’t taken

• Naturally recursive, whereas BFS is naturally iterative

• You usually use DFS to scan a graph unless you 
specifically need the BFS traversal order
– DFS requires less bookkeeping

• BFS uses queue because its traversal doesn’t follow the graph edges

– Possible to find target faster, if good branching choices 
made
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DFS Example

• Start at a

• Visit c, j, d, i, g at g, 
must backtrack

• i and d have no new 
neighbors

• Backtrack to j
– try h

– then continue with e, b
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DFS Forests

• On an unconnected graph, or a weakly connected 
directed graph, DFS may not visit all nodes

• Solution is to repeatedly pick an unvisited node 
and run DFS again with that node as root

• The result is a DFS forest

• Note that in a directed graph, there may be graph 
edges that would connect the trees if the DFS had 
chosen different starting roots
– e.g. start with b, or start with d a

b c
d
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DFS Pseudocode

• Call DFS on each vertex v in V
DFS(v)

if v is unvisited

mark v as visited

for each edge (v,w)

DFS(w)

• We can use DFS to do topological sort
– At end of DFS function, prepend v to the result list
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Various Graph Problems

• You’ve seen a couple of graph algorithms
– Topological sort

– Unweighted shortest path (using BFS)

• Now that you’ve seen BFS and DFS, we can 
discuss several more well-known graph problems
– Dijkstra’s algorithm (weighted shortest path)

– Minimum spanning trees
• Prim’s algorithm, Kruskal’s algorithm

– Hamiltonian circuit
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Dijkstra’s Algorithm

• BFS shortest path doesn’t work on weighted graphs
– Shortest weighted path may have more hops

• Recall how BFS shortest path worked
– Each node has a path length associated

– Nodes to be expanded have shortest length seen so far

• Dijkstra’s algorithm is similar; we always expand 
the best node seen so far

• Unlike BFS, we may update nodes we’ve already 
visited, if we find a better path to that node
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Weighted Shortest Path Applications

• Cheapest multiple-hop airline schedule
– BFS would give minimum number of hops

• Email routing
– Vertices are computers, edges are network links

– Find routing path with smallest total link delay

• Shipping costs via multiple carriers

• etc etc etc
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Dijkstra Example (paths from a)

• a is done
– update b, d

• d has shortest 
path; it’s done
– update c, e, g, 

h

• b has shortest 
path; it’s done
– no updates
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Dijkstra pseudocode

• Only works if no edge has a negative cost
repeat until no undone nodes

v = undone node with shortest path

v.done = TRUE

for each node w adjacent to v

if v.dist + (v,w).cost < w.dist

update w.dist

w.prev = v

• At this point, for any target node x, we can follow 
the ‘prev’ chain to compute the path from a
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Dijkstra Analysis

• Outer loop executes |V| times; body has two parts:
– Find smallest remaining—naive would be O(|V|) scan

– Update neighbors—O(|E|) over whole algorithm

• So, O(|E| + |V|2), which is ≈ O(|E|) for dense graphs

• For sparse graphs, however, this is too slow
– Use priority queue to find smallest: DeleteMin is O(1)

– Update neighbor is a DecreaseKey: O(log |V|)

– O(|E| log |V| + |V| log |V|) ≈ O(|V| log |V|) for sparse graphs

• Only works if no edges have negative costs
– Algorithm to handle that mentioned in book, cost is O(|E| * |V|)!
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Greedy Algorithms

• Dijkstra’s algorithm is an example of a greedy
algorithm

• Greedy algorithms always take the step that 
currently seems best
– No consideration of long-term or global issues

– Not always optimal or even correct

• Be happy if a greedy technique is applicable, 
because the shortsighted approach often results in 
a near-linear cost
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Minimum Spanning Trees (MST)

• We saw that BFS and DFS will create a spanning 
tree for a (connected) graph

• However, there are many possible spanning trees

• Given an undirected, weighted graph, we want to 
construct the spanning tree with the minimum 
total edge cost

• Examples:
– Oil pipelines between various cities

– Cables run between outlets in a house
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MST: Greed is Good

• An MST satisfies an important property:
– Adding one more edge will create one cycle

• Removing any other edge from that cycle makes it a tree again

• This suggests a greedy technique
– Add an edge to the MST if you can remove a higher-

cost edge from any cycle you create

• Two greedy algorithms are available to construct 
MSTs: Prim’s and Kruskal’s
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MST: Prim’s Algorithm

• Tree starts with any single node
• Add nodes to tree as follows:

– Find lowest-cost edge (u,v) where u is in the tree and v 
is not

• Don’t want to scan all edges
– For each vertex not in tree, remember the cost and 

name of the nearest node in the tree, if any
– After adding a node to tree, update all adjacent nodes 

that aren’t in the tree

• Almost exactly like Dijkstra’s algorithm
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MST: Prim example

• Start with a
– update b c d

• d closest (to a)
– update c e g h

• b closest (to a)
– no updates

• c closest (to d)
– update g

• h closest (to d)
– update e g

• g closest (to h)

• e last
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MST: Kruskal’s Algorithm

• Prim added cheapest edge that was attached to the 
current tree

• Instead, just add cheapest edge anywhere, as long 
as it doesn’t create a cycle
– During construction, we’ll have a forest, not a single tree

• How to tell if adding (u,v) creates a cycle?
– Only if u and v are both in the same tree

• Note: no data tracked per node, unlike 
Prim/Dijkstra
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MST: Kruskal example

• Start with a
• (a,d)==1
• (g,h)==1
• (a,b)==2
• (c,d)==2
• (b,d),(a,c) 

rejected
• (d,h)==4
• (c,g) rejected
• (e,h)==6
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Implementing MST

• Prim is just like Dijkstra, so use a priority queue if the 
graph is not dense
– O(|E| log |V|) for sparse, or O(|V|2) for dense

• Kruskal needs to detect whether two nodes are part of 
the same tree
– This is a job for the union/find structure!

• Each time edge (u,v) is tested, reject if Find(u)==Find(v)
• Otherwise do a Union(Find(u),Find(v))

– Still need a priority queue to get smallest edge
– May have to try every edge, so O(|E| log |E|) = O(|E| log |V|)

• In practice, not so bad
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Hamiltonian Circuit

• A Hamiltonian circuit of a graph is a simple cycle 
(i.e. no repeats) that visits every node once

• Is there a Hamiltonian circuit?
– In example, yes, d a b e h g c d

• There is no known algorithm
to solve this problem in polynomial time
– Not even a large polynomial, like N1000
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Solving Hamiltonian Circuit

• One way to do this is to try every possible path

• Recall that DFS marks nodes so they won’t be 
visited more than once
– e.g. once we visit adgc, we won’t touch g again

– so if we try that path, we won’t find a Hamiltonian

• Modify DFS to unmark nodes when done with 
them, so they can be visited via other paths
– e.g. we could do adgc, then abekg
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Exhaustive Search

Exhaustive(v)

if v is unvisited

mark v as visited

for each edge (v,w)

Exhaustive(w)

unmark v

• Sequence of paths tried might be:
– adgc, adgheba, adeba, adehgc, abeda, abedgc, abedcgh,

abehgda, abedgh, abehgcda, abehgdc

• How many possible paths are there?
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Analyzing Exhaustive Search

• Can write all possible paths 
as a search tree

• If average branching factor 
(i.e. size of adjacency list) is 
B, number of paths is O(B|V|) 

• Exponential time!
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Exponential Time is Bad
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P and NP

• Exponential is asymptotically worse than any
polynomial function

• In CS theory, the set P contains all problems which 
can be solved in polynomial worst case time

• The set NP contains all problems for which a 
candidate solution can be verified in polynomial time
– e.g. given a path, test whether it’s a Hamiltonian circuit

– includes all of P
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P ≠ NP ??????

• It is believed that there are problems in NP which 
are not in P, i.e. that don’t have a polynomial-time 
solution

• But no one is sure! This is one of the biggest, 
oldest unsolved problems in computer science
– Fame awaits you if you can figure it out

• Faced with this dilemma, a lot of theory has grown 
around NP to at least give us some information
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NP-completeness

• A subset of problems in NP (including the hardest 
ones) are known as NP-complete (NPC)

• Any problem in NP can be converted to an NP-
complete problem in polynomial time

• So, if anyone ever finds a polynomial solution to 
just one NP-complete problem, they’re all solved!
– No one has, yet

• To show that a problem Q is NPC, prove that a 
known NPC problem can be converted to Q in 
polynomial time
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NP-complete problems

• Many interesting problems are NP-complete
– Hamiltonian circuit
– Traveling Salesman: shortest Hamiltonian circuit
– Boolean Satisfiability
– Longest path
– Integer Partition: are there 2 subsets with same sum?
– Graph coloring: how many colors needed so no adjacent nodes 

have same color?
– Clique: find largest subset of vertices which are completely 

connected to each other

• Plenty of others occur in all branches of CS, engineering, 
math, science
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Living with NP-completeness

• Many techniques have been used to get around NPC
– Dynamic programming

• Avoid repeatedly solving the same subproblems

– Very probable average case that is polynomial
• Worst case still exponential, but make it very unlikely

– Approximate solutions
• Get an answer within some tolerance of optimum

– Wimpy exponentials
• 1.00001N is tolerable up to N=1,000,000 or so
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Who Cares?

• Although we won’t do much in this class, it’s 
important to know about NP-completeness

• You may find, as you design a program, that you 
have to solve a complex subproblem
– If you are familiar with the NP-complete problems, you 

can make a good guess whether yours is NPC also

– If it is, perhaps you should try another solution -


