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CSE 373: Graphs

Pete Morcos
University of Washington
5/3/00
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Paths and Cycles
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« A path isasequence of vertices connected by edges, e.g.
bed (but not dcb)
— Formally, asequencev,...v,, where (v,,v;,,) € E

— A simple path has no repeated vertices, except the first and last
can be the same

— Pathlength is number of edges, i.e. n-1
¢ A cycleisapath that begins and ends at the same
vertex (e.g. abca)
— Graphs without cycles are acyclic
— Directed acyclic graphs common, abbreviated DAG
« Sometimes we alow loop edgesin graphs, e.g. (a,a)
— Loopsaren’t cycles (i.e. cycles have length > 1)
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« VVery common to associate a numeric weight
or cost to each edgein agraph
— e.g. cost of path abed is 12+5+17

¢ Path length is different from path cost
— abcd has length 3, cost 34

¢ Could also associate costs with vertices
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Definition
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* Agraphisaset V of vertices and E of edges
— Vertices (singular vertex) also known as nodes
— Edgesin example are (a,b), (b,c), (c,a), (c,d)
— Edges can be directed as in example,
or undirected
« Verticesaand b are adjacent if thereisan
edge (a,b) or (b,a) inE
— (a,b) and (b,a) are the same if the graph is
undirected
« Edgestravelling into a vertex areincident on O
that vertex, those leaving are outgoing
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« A graph can have no edges at all... ® ® © @
« If any pair of nodesin an undirected

graph have a path between them, the @ ® © @

graph is connected -

— Inadirected graph, this is called strongly ® (0
connected Q"@

— A directed graph that would be connected if M (©
the edges were undirected is called weakly () (d)
connected

« Graphiscompleteif thereis an edge @‘@*
between every pair of nodes @— @
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Why Graphs?

¢ Useful whenever we want to express relationships
between things
— Road distances between cities on amap
— Airline flight costs between airports
— Wires connecting electrical pinson achip

— Soap operarelationships (Cliff loves Jade, Jade loves
Rod, Buffy loves Angel, ...)

— Call structuresin programs (main cals gsort, main calls
printf, gsort calls partition, ...)

« Very, very common in computer science
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Graphs vs. Other Data Structures
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¢ Graphs can be seen as ageneralized
version of many structures we' ve

e

seen
— Lists: directed, N-1 edges, al nodes @ B~ ©)
except ends have exactly one incident (©
and one outgoing edge @

— Trees: directed, N-1 edges, all nodes (b)
except root have oneincidentandup @ (©
to k outgoing edges

— Heaps, binomial queues, disoint sets © @&
arealso graphs @ %
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Implementing Graphs with Arrays
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» Adjacency Matrix —use a2D array @ ©
— A[il[j1 = 1if (i,j) € E, O otherwise @“@
— For weighted graphs, use cost instead of 1
— Timeto access edge is O(1)
— But space cost isO( [V[R)
« evenif [E| << |V|, known as a sparse graph

« e.g. 10,000 students, each with up to 10 friends;
need 100M cells to hold 100,000 friendships

— For undirected graphs, note that half of array
isredundant since A[i][j] == A[j][i]
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Topological Sort
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« A simple“starter” problem to get used to
working with graphs
* TurnsaDAG into alist vyV,...v, asfollows:
— If thereisapath fromy; to v; in the graph, then i <j
— (There can't also be a path from v; to vi—why?)
« Example: assign numbers to CSE classes so no
class has a higher-numbered prerequisite.
¢ Many orderings possible—most graphs only
specify a partia order on the nodes
— e.g. 373 and 326 can appear in any order
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Useful Edge Properties to Know
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¢ (Assume undirected graphs for this dide)

« A graph can have asfew as 0 edges

Let N =|V |, i.e. the number of verticesin V
A complete, undirected graph has N(N-1)/2 edges
— Would be N2 if we allowed loops

— Directed graph can have twice as many edges
« A connected graph has at least N-1 edges

— If there are exactly N-1 edges then there are no cycles
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Implementing Graphs with Lists
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e Adjacency List —use array of lists
— For each vertex, alist of adjacent vertices 0‘
— Only requires O( [E| + |V|) space

— But takes longer to check for an edge
— How do we access array if nodes are not named with
numbers?
— For undirected graphs, usualy still use redundant space
by storing info on both sides, for convenience
« Either representation OK, so a good reason to use
ADT operations and hide the implementation
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Topological Sort Algorithm
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* Repeat:
— Pick any node n with zero incident edges
« Let'scal thisan“in-degree’ of zero
« There must be at least one such node if there are no cycles
— Append nto list (list isinitially empty)
— Remove n and all outgoing edges from graph
» Naiveimpl.: first stepis O(|V|), repeated [V|times= O(VP)
* Make scan more efficient by maintaining stack or queue of
zero-incident nodes, and tracking in-degree for al nodes.
— Eachtime anode is removed, decrement in-degrees of adjacent nodes.
— Any node that drops to in-degree==0 is added to stack.

« |If adjacency lists used, timeis now O(|V| + [E])

e
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Topological Sort Example

« Indegrees: a=1,b=0,c=2,d=1 B @@ _O.@
— Choose b

« Indegrees: a=0, c=2, d=0 o] @_/@‘\@

— Choose d (could choose a)

* Indegrees: a=0, c=1 (©
N bd

— Choosea
¢ Indegrees: c=0
bda
— Choose ¢, done ©
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BFS Shortest Path Pseudocode

« Use aqueue to track which nodes need to be expanded
« For each node, store distance and previous node in the path
curdist = dist[a] = 0
enqueue (a)
while (queue not empty)
x = dequeue
for each node y adjacent to x and not visited
prev(yl = x
dist[y]l = dist[x] + 1
enqueue y
« We can now use ‘prev’ to recover the shortest path
« Items underlined change for weighted graphs
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About BFS
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* BFSrefersto aparticular traversal order
— “Expanding circles’, each one hop farther than last
— Cycles not aproblem, since we track visited nodes

* Because of thistraversal order, BFSisasuitable
algorithm for finding the shortest path

— Weknow that any nodes not yet visited must be more
hops from start node than all nodes seen so far

¢ But, BFS also used for other purposes
« BFSworks fine on directed graphs as well

e
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Breadth-first search (BFS)
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¢ Suppose we want to find the shortest path from node
atonodeb, if thereisone @
« Starting at node a: 9’? ®
— Step along each of its edges )@ ®
— If b not found, step along each edge of each node you saw
« Skip already-visited nodes
— Repeat, and fail when no new nodes are reachable
« If we do this over the whole graph, the visited edges
form a spanning tree for the graph
— Actually, just for the part of graph reachable from a
¢ O(V| + [E] timeif using adjacency lists
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BFS Shortest Path Example
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e Visited: a Spanning tree
" . formed by BFS:
— Adjacent: ci @
» Visited: aci )
— Adjacent: gj d

* Vidted:acigjd;

— Adjacent: h -
.. ) P a1l Traversal order
» Visted:acigjd h‘/ SN of this tree
— Adjacent:eb  “*¥ @ 1 (h) sometimes called
i 2 L)y 35T “level order”
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Depth-first search (DFS)
* DFS searches down one path asfar asit can go
— When no new nodes available, it backtracks
— Backtracking reveals side paths that weren't taken
« Naturally recursive, whereas BFS is naturally iterative

¢ You usualy use DFS to scan a graph unless you
specifically need the BFS traversal order
— DFSrequires less bookkeeping
« BFS uses queue because its traversal doesn’t follow the graph edges
— Possible to find target faster, if good branching choices
made
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DFS Example
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. G ing tri
Start at a G’W ® f;p;gg%ﬁes
OMCIaD @ ®

. Vistc,j, d i, gag, ¢ (©
N~~~ I
must backtrack @ Yl ® 0
« i and d have no new |{___d ® @ (h
neighbors - I
. n)ole)
» Backtrack toj ]c\\{ e\ @ ®
— (g (a)” h -
tyh . ) { |I (d ) O Thistree was
— then continuewithe, b~ traversed in
preorder
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DFS Pseudocode
e Cal DFSon each vertexvinV
DFS (v)

if v is unvisited
mark v as visited
for each edge (v,w)
DFS (w)
« We can use DFSto do topological sort
— At end of DFS function, prepend v to the result list
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Dijkstra’s Algorithm
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« BFS shortest path doesn’t work on weighted graphs
— Shortest weighted path may have more hops
¢ Recall how BFS shortest path worked
— Each node has a path length associated
— Nodes to be expanded have shortest length seen so far
« Dijkstra s algorithm is similar; we aways expand
the best node seen so far
¢ Unlike BFS, we may update nodes we' ve already
visited, if wefind a better path to that node
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DFS Forests

O O T O [T [T O T

« On an unconnected graph, or aweakly connected
directed graph, DFS may not visit al nodes

« Solution isto repeatedly pick an unvisited node
and run DFS again with that node as root
e Theresultisa DFS forest

« Notethat in adirected graph, there may be graph
edges that would connect the treesif the DFS had

chosen different starting roots ® ©
_ : ; L=dNG)
e.g. start with b, or start with d @ >
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Various Graph Problems
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* You've seen acouple of graph algorithms
— Topological sort
— Unweighted shortest path (using BFS)
« Now that you' ve seen BFS and DFS, we can
discuss several more well-known graph problems
— Dijkstra’ s algorithm (weighted shortest path)
— Minimum spanning trees
 Prim’s algorithm, Kruskal’s algorithm
— Hamiltonian circuit
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Weighted Shortest Path Applications
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¢ Cheapest multiple-hop airline schedule
— BFS would give minimum number of hops
« Email routing
— Vertices are computers, edges are network links
— Find routing path with smallest total link delay
« Shipping costs viamultiple carriers
e elc etfcetc

e
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Dijkstra Example (paths from a)
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« aisdone ¢ eisnext

— updateb, d (tiewith c)

¢ noupdae ¢

¢ d has shortest

path; it'sdone - « cisnext

— ﬁpdae ceg0, « updateg

d,3\ 5781 alza 6/ d3
c8 1 "

¢ b has shortest (b

path; it's done

— no updates

T ds * noupdate hs 1
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Dijkstra Analysis
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« Outer loop executes [V | times; body has two parts:
— Find smallest remaining—naive would be O(|V|) scan
— Update neighbors—O(|E[) over whole algorithm
* S0, O([E| + VP), which is= O(|E|) for dense graphs
« For sparse graphs, however, thisistoo slow
— Use priority queue to find smallest: DeleteMin is O(1)
— Update neighbor is a DecreaseKey: O(log V)
— O(|E]log V| + V] log [V]) = O(IV| log |V|) for sparse graphs
« Only worksif no edges have negative costs
— Algorithm to handle that mentioned in book, cost is O(|E| * [V|)!
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Minimum Spanning Trees (MST)
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* We saw that BFS and DFS will create a spanning
tree for a (connected) graph
« However, there are many possible spanning trees
« Given an undirected, weighted graph, we want to
construct the spanning tree with the minimum
total edge cost
¢ Examples:
— Oil pipelines between various cities
— Cables run between outletsin a house
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Dijkstra pseudocode

e

O O T O [T [T O T

« Only works if no edge has a negative cost

repeat until no undone nodes

v = undone node with shortest path
v.done = TRUE
for each node w adjacent to v
if v.dist + (v,w).cost < w.dist
update w.dist

w.prev = v

« At this point, for any target node x, we can follow

the ‘prev’ chain to compute the path from a
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Greedy Algorithms
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« Dijkstra' s algorithm is an example of a greedy

algorithm

Greedy algorithms aways take the step that
currently seems best

— No consideration of long-term or global issues

— Not always optimal or even correct

Be happy if a greedy techniqueis applicable,
because the shortsighted approach often resultsin
anear-linear cost
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MST: Greed is Good
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¢ An MST satisfies an important property:

— Adding one more edge will create one cycle
» Removing any other edge from that cycle makes it atree again

« This suggests a greedy technique

— Add an edge to the MST if you can remove a higher-
cost edge from any cycle you create

« Two greedy algorithms are available to construct

MSTs: Prim’s and Kruskal’'s
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MST: Prim’s Algorithm
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* Tree starts with any single node
¢ Add nodesto tree asfollows:
— Find lowest-cost edge (u,v) where uisin the tree and v
isnot
« Don't want to scan all edges

— For each vertex not in tree, remember the cost and
name of the nearest node in the tree, if any

— After adding anode to tree, update all adjacent nodes
that aren’t in the tree

« Almost exactly like Dijkstra’ s algorithm
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MST: Kruskal’s Algorithm
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« Prim added cheapest edge that was attached to the
current tree
« Instead, just add cheapest edge anywhere, as long
asit doesn't create acycle
— During construction, we'll have aforest, not asingle tree
« How totell if adding (u,v) creates a cycle?
— Only if uand v are both in the same tree
« Note: no data tracked per node, unlike
Prim/Dijkstra

UW, Spring 2000 CSE 373: Data Structures and Algorithms 3
Pete Morcos

fa e s e e 0a a2 n s un e a2 e s S o n £ e}

Implementing MST
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¢ Primisjust like Dijkstra, so use apriority queueif the
graph is not dense
— O(|E| log |V]) for sparse, or O(|V ) for dense
¢ Kruskal needs to detect whether two nodes are part of
the sametree
— Thisisajob for the union/find structure!
» Eachtime edge (u,v) is tested, reject if Find(u)==Find(v)
» Otherwise do a Union(Find(u),Find(v))
— Still need a priority queue to get smallest edge
— May haveto try every edge, so O(|E| log |E]) = O(|E| log [V|)
* Inpractice, not so bad
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MST: Prim example

Start witha
— updatebcd
d closest (to &)
— updatecegh
b closest (to &)
— no updates
c closest (to d)
— updateg
h closest (to d)
— updateeg
g closest (to h)
elast

L@ b as 1.9/
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MST: Kruskal example

¢ Startwitha

. (ad)::l

. (g’h)::]_

+ (ab)==2

e (c,d)==2

+ (bd),(ac)
rejected

e (dh)==4

. (cg) rected o]
¢ (eh)==6 %
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Hamiltonian Circuit
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« A Hamiltonian circuit of agraphisasimplecycle
(i.e. no repesats) that visits every node once

e

« |sthere aHamiltonian circuit? @—®
— Inexample, yes,dabehgcd © @‘@
¢ Thereisno known algorithm '@.0

to solve this problem in polynomial time
— Not even alarge polynomial, like N100
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Solving Hamiltonian Circuit

« Oneway todothisisto try every possible path
¢ Recall that DFS marks nodes so they won't be
visited more than once
— e.g. once we visit adgc, we won't touch g again
— soif wetry that path, we won't find a Hamiltonian
* Modify DFS to unmark nodes when done with
them, so they can be visited via other paths ®
— e.g. we could do adgc, then abekg

O
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Analyzing Exhaustive Search

¢ Canwrite al possible paths
asasearchtree

« If average branching factor
(i.e. Sze of adjacency list) is
B, number of pathsis O(BIVI)

« Exponentia time!
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« Exponential is asymptotically worse than any
polynomial function

¢ In CStheory, the set P contains all problems which
can be solved in polynomial worst casetime

» The set NP contains al problemsfor which a
candidate solution can be verified in polynomial time
— e.g. given apath, test whether it's a Hamiltonian circuit
— includesall of P
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Exhaustive Search
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Exhaustive (v) @ ®)

if v is unvisited
©—d—e
o/

mark v as visited
for each edge (v,w)
Exhaustive (w)
unmark v

* Sequence of paths tried might be:

— adgc, adgheba, adeba, adehgc, abeda, abedgc, abedcgh,
abehgda, abedgh, abehgcda, abehgdc

« How many possible paths are there?
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Exponential Timeis Bad
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log = N
g | 9N N NlogN N P
0 1 - 1 2
0 1 2 2 4 .
o2 4 8 16 16
3 0 3 100 1024
2 7 100 700 10,000 | -e00eEn0000000000000000020.000
3] 10 1,000 10,000 1,000,000 rrp————
4] 20 1,000,000 20,000,000 | 1,000,000,000,000 20000t
5| 30| 1,000,000,000 | 30,000,000,000 1,000,000,000,
000,000,000
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¢ Itisbelieved that there are problemsin NP which
arenot in P, i.e. that don’t have a polynomial-time
solution

» But nooneissure! Thisisone of the biggest,
oldest unsolved problems in computer science

— Fame awaits you if you can figureit out

* Faced with this dilemma, alot of theory has grown

around NP to at least give us someinformation
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NP-completeness NP-complete problems

* A subset of problemsin NP (including the hardest + Many interesting problems are NP-complete
ones) are known as NP-complete (NPC) — Hamiltonian circuit
. bl inNP b ted t NP. — Traveling Salesman: shortest Hamiltonian circuit
Any problem in NP can be converted to an NP- _ Boolean Satisfiability
complete problem in polynomial time — Longest path
* So, if anyone ever finds a polynomia solution to — Integer Partition: are there 2 subsets with same sum?
jUS oneN P—compl ate probl em they’ reall solved! — Graph coloring: how many colors needed so no adjacent nodes
’ have same color?
— Noone has, yet — Clique: find largest subset of vertices which are completely
« To show that a problem Q isNPC, prove that a connected to each other
known NPC problem can be converted to Q in * Plenty of others occur inall branches of CS, engineering,
polynomial time math, science
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Living with NP-completeness Who Cares?
» Many techniques have been used to get around NPC * Although wewon't do much in thisclass, it's
— Dynamic programming important to know about NP-compl eteness
* Avoid repeatedly solving thesamelwbproblems. e You may find, as you desi gn aprogram, that you
— Very probable average case that is polynomial have to solve a complex subproblem

+ Worst case sill exponential, but meke it very unlikely — If you are familiar with the NP-complete problems, you

- Apzroxi mate sol gt:\pns | o can make a good guess whether yoursis NPC also
’ et an answer W[t In sometolerance of optimum — If itis, perhaps you should try another solution ©
— Wimpy exponentias
 1.00001N is tolerable up to N=1,000,000 or so
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