
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Amortized Analysis & Splay Trees

Pete Morcos

University of Washington

5/15/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

Back to Binomial Queues

• Recall BQ operations
– Merge

– Insert

– DeleteMin

46 3

65 11

18

19

31 87

99

B0
B1 B2 B3

17 14

23

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

BQ Analysis

• How long does it take to build a BQ with N Inserts?
• A BQ can contain up to log N trees, so worst-case

time for Insert is O(log N)
– Leading us to believe O(N log N) for total cost

• Actually, it’s only O(N)
– In contrast, N Inserts on a heap are O(N log N)
– But, there was an O(N) method called BuildHeap

• We need a better analysis technique than just
multiplying the worst case for an individual
operation by the number of ops

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

A Pattern

• Count the work done for each
insertion
– Cost varies each time
– But, we can write an expression that

is the same for each step
– Let Ti = # of trees at step i
– (Ti – Ti-1) + Ci = 2
– Each time we add a tree, the step is

cheap
– When we remove trees, the step is

more expensive

• Key observation:
– Worst case (log N) can’t happen

every time

4B3B0 B1 B2

1B0 B3B3

1B0 B1 B2B1 B2

2B1 B2B0 B2

1B0 B2B2

3B2B0 B1

1B0 B1B1

2B1B0

1B0

costafter insertbefore insert

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

The Potential

• The number of trees is called the potential; a
bookkeeping device
– Think of it as a bank account

• We give each Insert a “budget” of 2 work units
– i.e., Insert has an “amortized cost” of O(1), even though

its worst-case cost is O(log N)

• The potential tracks how much “credit” we’ve
accumulated by doing under-budget operations

• The potential is non-negative (# of trees), so we
know we never go into “debt”

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

BQ Potential

• As we observed before,
– cost + ∆P = 2

• For any sequence of N steps
– Σ (cost + ∆P) = 2N

– Σ cost = 2N – Σ ∆P

– But, Σ ∆P = P, and P ≥ 0

– So, Σ cost ≤ 2N = O(N)

• Key points for amortization:
– P begins at its minimum value

– cost + ∆P is a simple function (the “budget”)

1

3

2

2

1

2

1

1

0

old
P

-2

+1

0

+1

-1

+1

0

+1

∆P

4

1

2

1

3

1

2

1

Insert
cost

B0 B1 B2

B3

B1 B2

B0 B2

B2

B0 B1

B1

B0

Previous tree

2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Why Amortize?

• We could have just figured out the total cost by hand
– Costs form an interesting regular pattern; remember the

draw_ruler homework?

• But that would only be valid for sequences of
nothing but Inserts
– Throwing in a DeleteMin would violate the calculation

• However, using the same potential, DeleteMin can be
shown to have amortized cost of O(log N)
– Thus, any sequence of M DeleteMins and N Inserts costs

O(N + M log N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Splay Trees—a new ADT

• A splay tree is a binary search tree

• We know that an unbalanced tree has O(N) worst
case behavior
– A sequence of M operations is, then, O(MN)

• AVL trees used rotations to keep tree balanced,
giving worst case time of O(M log N)

• Splay trees can be unbalanced, but each time a
node is accessed, we move it to the root via
splaying

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Splaying

• After accessing a node, we have to move it
– If we didn’t, repeated operations would cost the same. If

the node was deep [O(N)], the total cost will be too high.

– We choose to move it all the way to the root

• We have to maintain the binary search tree property

• AVL rotations were a way to move a node within a
tree without destroying the property

• Repeated use of rotations can move a node all the
way to the root

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Splay Rotations

• First, recall the two types of AVL rotation
P

X

b

c

a

X

P

c

a

b

P

X

c

a

b

G

d P G

ca b

X

d

X moves
up one
level

X moves
up two
levels

“zig”

“zig-zag”

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Not Good Enough

• Consider using single rotations to fix a typical worst-case
tree
– Worst [O(MN)] access pattern is 1, 1, 1, 1, ...

• Yes, 1 is at root, but other nodes all got worse
– There’s still a worst case pattern of 1, 2, 3, 4, 5, 1, 2, 3, ...

5

4

3

2

1

a b

c

d

e

f

5

4

3

1

2

b c

a

d

e

f

5

4

1

3

2

b c

d

a

e

f

5

1

4

3

2

b c

d

e

a

f

1

5

4

3

2

b c

d

e

f

a

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

zig-zig

• One more rotation type needed, to replace “zig”
(single-rotation)
– This new rotation helps to balance the tree

– Only use single rotation when X’s parent is the root

P

X

b

c

a

G

d P

G

d

b

c

X

a

3

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

13

Using zig-zig

• Result is a wider, shallower tree
– 5 is still fairly shallow, unlike previous single rotation

example

– No node is at depth 4 any more

5

4

3

2

1

a b

c

d

e

f

5

4

1

2

3

c d

b

a

e

f

1

4

52

3

c d

b e f

a

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

14

Splay Analysis Difficult

• Splaying can cause nodes to move down as well as up
– Even all the way down to N-1 depth
– Consider accessing 1, 2, 3, 4, 5 in previous example

• So any single operation could always cost O(N), even after
we’ve done several splays

• The way we’ve done analysis so far, we’d be forced to say
worst case for M operations is O(MN)

• Turns out not to be as bad as we think
– Splays do improve the tree; some operations will be better than

O(N)

• We need a more sophisticated analysis, using amortization

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

15

Splay Potential

• The potential function is more complex this time

• At each step i, let Si(X) = size of the subtree
rooted at X (including X itself)

• Let Ri(X)= log Si(X), known as the rank of X

• Potential P = Σ Ri, over entire tree

• We want to compute an amortized bound on the
total cost of a splay, which is an unknown
sequence of zigs, zig-zags, and zig-zigs

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

16

zig Amortized Time Cost

• actual cost is 1, and ∆Pot = ∆R(X) + ∆R(P)
– R(P) obviously decreases, so ∆R(P) is negative

– Thus, ∆Pot <= ∆R(X)

– and amortized time budget is: AT <= 1 + ∆R(X)
• remember, budget = actual cost plus ∆potential

P

X

b

c

a

X

P

c

a

b

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

17

zig-zag Amortized Cost

• actual cost is 2, ∆Pot = ∆R(X) + ∆R(P) + ∆R(G)
– AT = 2 + [Rf(X) - Ri(X)] + [Rf(P) - Ri(P)] + [Rf(G) - Ri(G)]

– but Rf(X) = Ri(G), so

– AT = 2 - Ri(X) + [Rf(P) - Ri(P)] + Rf(G)

– and, since Ri(X) <= Ri(P),

– AT <= 2 – 2 * Ri(X) + Rf(P) + Rf(G)

P

X

c

a

b

G

d P G

ca b

X

d

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

18

a sidetrack

• It turns out that, for positive a, b, c
– If a + b <= c

– Then log a + log b <= 2 log c – 2

– (see book for proof)

• In terms of this problem, using sizes and ranks,
– If S(a) + S(b) <= S(c)

– Then R(a) + R(b) <= 2 R(c) - 2

4

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

19

zig-zag continued

• We ended with AT <= 2 – 2 * Ri(X) + Rf(P) + Rf(G)
• We see that Sf(P) + Sf(G) <= Sf(X)

– So, Rf(P) + Rf(G) <= 2 Rf(X) – 2, using last slide
– Thus, AT(zig-zag) <= 2 * Rf(X) – 2 * Ri(X) = 2 ∆R(X)

• A similar analysis holds for zig-zig:
– AT(zig-zig) <= 3 ∆R(X)

P

X

c

a

b

G

d P G

ca b

X

d

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

20

Putting it together

• We have:
– AT(zig) <= 1 + ∆R(X) <= 1 + 3 [Rf(X) – Ri(X)]

– AT(zig-zag) <= 2 ∆R(X) <= 3 [Rf(X) – Ri(X)]

– AT(zig-zig) <= 3 ∆R(X) <= 3 [Rf(X) – Ri(X)]

• We repeat the steps until X replaces the root R
– zig only happens once, so the 1 is only added once

– Each time, the last Rf(X) is cancelled by the next –Ri(X)

• The only terms left are: AT(total) <= 1 + 3*[Rroot(X) – Rinitial(X)]

• Rinitial(X) could be as low as 0, Rroot(X) as high as log N

• Thus, total budget for whole sequence is O(log N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

21

Whew!

• You don’t have to remember all this analysis for splay trees

• The important points are:
– What a splay tree is

– How a splay tree works
• Rotation details of splaying

• Find(X)—search normally, then splay X, or last node seen if X not found

• Insert(X)—insert normally, then splay X

– Max cost of a single splay is O(N)
• But all those rotations make future accesses faster

– Amortized cost of a single splay is O(log N)
• Any sequence of M operations costs O(M log N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

22

Amortization Summary

• If worst case cost can’t happen every time, amortization may
give a tighter bound
– Worst case often makes many future steps cheaper
– Actual cost usually complex, and varies each step—hard to use

• Trick is to simplify a complex cost function by adding a
potential
– actual cost + ∆potential = simpler function (the amortized budget)

• Potential starts at its minimum (usually zero)
– If it could later drop below start value, we’d be over budget!

• Amortization useful when thinking about arbitrary sequences
of mixed operations (“N Inserts, M Deletes, etc.”)
– Must use same potential function to analyze each one

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

23

Amortization is not Average-case!

• Amortized analysis says
– There are N operations
– Show that together, all N ops cost < C no matter what
– Then amortized cost is the average cost C / N

• We take the average of several steps used to process an
input, true for any input!

• Average-case analysis says
– There are Z possible inputs
– Show that total cost of all inputs is X
– Then the average cost of running the program is X / Z

• We take the average of several inputs, but some inputs may
be worse than average!

