[Exptate et e Me s e s M s Max Bax Ba e i e S ax Ba s Mas M s M Ba s Ma s M s s B e s e

CSE 373: Amortized Analysis & Splay Trees

Pete Morcos
University of Washington
5/15/00

[e e e e e s e e e

BQ Analysis
« How long does it take to build a BQ with N Inserts?
* A BQ can contain up to log N trees, so worst-case
timefor Insert is O(log N)
— Leading usto believe O(N log N) for total cost
» Actualy, it'sonly O(N)
— In contrast, N Inserts on a heap are O(N log N)
— But, there was an O(N) method called BuildHeap
* We need a better analysis technique than just

multiplying the worst case for an individual
operation by the number of ops

[ax i an e s

e

UW, Spring 2000 CSE 373: Data Structures and Algorithms 3
Pete Morcos
oo et e =]

» The number of treesis called the potential; a
bookkeeping device
— Think of it as abank account

« Wegive each Insert a“budget” of 2 work units

— i.e, Insert has an “amortized cost” of O(1), even though
its worst-case cost is O(log N)

The potential tracks how much “credit” we' ve

accumulated by doing under-budget operations

« The potential is non-negative (# of trees), so we
know we never go into “debt”

UW, Spring 2000 CSE 373: Data Structures and Algorithms 5
e Morcos

Back to Binomial Queues

[EESEIIOEN e I+ T T (T (T T T T D
« Recall BQ operations
— Merge
— Insert
— DeleteMin
‘
@
Bu 51 B7
[UW, Spring 2000 CSE 373: Dat Algorithms
Pete Morcos
A Pattern
0T+ T T (T T T T - - T T T T T
» Count the work done for each beforeinsert | after insert cost
insertion B, 1
— Cost varies each time B, B, 2
— But, we can write an expression that[— B. B 1
is the same for each step = 0
— LetT,=#of treesat step i B B B, |3
- (M-Ti)+G=2 Bz Bo B :
— Eachtimewe add atree, the tepis | o B, B, B, 2
cheap B, B, B, B, B, 1
— Whenwe remove trees, thegepis |g, B, B, B, |4
more expen?ve 5, |5, 5.1
« Key observation:
— Worgt case (log N) can't happen
every time
UW, Spring 2000 CSE 373: Data Structures and Algorithms 4
Pete Morcos
BQ Potential
[EESEIIOEN e I+ T T T T T T T T T D)
* Aswe observed before, Previous tree oé’d Insert | AP
cost
—cost+AP=2 o 1 1.1
¢ For any sequence of N steps |5, 1] 2 Jo
— X (cost + AP) =2N By L
—Zcost=2N-X AP Bo By Gl I
_ B, 1 1 +1
— But,XAP=P,andP>0 5, 5, 2 2 °
- So,Zcos[£2N=O(N) B, B, 2 1 +1
¢ Key pointsfor amortization: | B. B, |3 | 4 |-2
— Pbeginsat its minimum value Bl

— cost + APisasimple function (the “budget”)

UW, Spring 2000 CSE 373: Data Structures and Algorithms 6
Pete Morcos

Why Amortize?

[axitan et s ax e Bea M s M larte e e e s e e e e e e e S

* We could have just figured out the total cost by hand

— Costsform an interesting regular pattern; remember the
draw_ruler homework?

« But that would only be valid for sequences of
nothing but Inserts
— Throwing in a DeleteMin would violate the calculation
« However, using the same potential, DeleteMin can be
shown to have amortized cost of O(log N)
— Thus, any sequence of M DeleteMinsand N Inserts costs

O(N + M log N)
UW, Spring 2000 CSE 373: Data Structures and Algorithms 7
Pete Morcos
Splaying
B - 0

« After accessing anode, we have to move it

— If we didn'’t, repeated operations would cost the same. If
the node was deep [O(N)], the total cost will be too high.

— We choose to move it al the way to the root
« We have to maintain the binary search tree property

« AVL rotations were away to move a node within a
tree without destroying the property

« Repeated use of rotations can move anode all the
way to the root

UW, Spring 2000 CSE 373: Data Structures and Algorithms 9
Pete Morcos

Not Good Enough

[axitan et s ax e Bea M s M larte e e e s e e e e e e e S

« Consider using single rotationsto fix atypical worst-case
tree
— Worst [O(MN)] access patternis 1,1, 1, 1, ...
* Yes, lisatroot, but other nodesall got worse
— There'sstill aworst case patternof 1, 2, 3,4,5,1,2, 3, ...

CSE 373: Data Structures and Algorithms.
Pete Morcos

‘ag ® A 3 X moves
@ A Q up one
© ®

Splay Trees—anew ADT

* A gsplay treeisabinary search tree

* Weknow that an unbalanced tree has O(N) worst
case behavior
— A sequence of M operationsis, then, O(MN)

« AVL trees used rotations to keep tree balanced,
giving worst case time of O(M log N)

« Splay trees can be unbalanced, but each time a
node is accessed, we move it to the root via
splaying

UW, Spring 2000 CSE 373: Data Structures and Algorithms 8
Pete Morcos

O O T O [T [T O T

Splay Rotations

[ax i an e s fa e s e e 0a a2 n s un e a2 e s S o n £ e}

 First, recall the two types of AVL rotation

e

X moves

G /A m 2 2
/A X VOV
/o\ /o\

UW, Spring 2000 CSE 373: Data Structures and Algorithms 10
Pete Morcos
oo et e =]

« One more rotation type needed, to replace “zig”
(single-rotation)
— This new rotation helps to balance the tree
— Only use single rotation when X’ s parent is the root

®
A ®
AN ©
/e\ /o

UW, Spring 2000 CSE 373: Data Structures and Algorithms 12
Pete Morcos

Using zig-zig

* Result isawider, shallower tree

— 5isdtill fairly shallow, unlike previous single rotation
example

— No nodeisat depth 4 any more

O

e

Pete Morcos

Splay Potential

[ax i an e s aeste e e e e s e M

e

The potential function is more complex thistime

e Ateach stepi, let S(X) = size of the subtree
rooted at X (including X itself)

e Let R(X)=log S(X), known astherank of X

« Potential P= X R;, over entiretree

* We want to compute an amortized bound on the

total cost of a splay, which isan unknown

sequence of zigs, zig-zags, and zig-zigs

UW, Spring 2000 CSE 373: Data Structures and Algorithms 15
Pete Morcos

zig-zag Amortized Cost

o e e e e

©
®) /a\ ® ©
A & =N AR
« actual cost is 2, APot = AR(X) + AR(P) + AR(G)
= AT =2+ [R(X) - R(X)] + [R(P) - R(P)] +[R{(G) - R(C)]
~ but R(X) = R(G), 0
= AT =2-R(X) +[R¢(P) - R(P)] + R(G)
— and, since R/(X) <= R(P),
— AT<=2-2* R(X) + R(P) + R(G)

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 17
Pete Morcos

Splay Analysis Difficult

O e

O O T O [T [T O T

« Splaying can cause nodes to move down as well as up
— Evenall the way down to N-1 depth
— Consider accessing 1, 2, 3, 4, 5 in previous example
« So any single operation could always cost O(N), even after
we' ve done several splays

* Theway we've done analysis so far, we' d be forced to say
worst case for M operationsis O(MN)

¢ Turnsout not to be as bad as we think

— Splays do improve the tree; some operations will be better than
O(N)
« We need a more sophisticated analysis, using amortization

UW, Spring 2000 CSE 373: Data Siructures and Algorithms. 14
Pete Morcos

zig Amortized Time Cost

O [T O+ (O (O (O [T - 0

® X
@ /o m) A 2
/a\ /o\ [\ /e\
¢ actual costis1, and APot = AR(X) + AR(P)
— R(P) obviously decreases, so AR(P) is negative
— Thus, APot <= AR(X)

— and amortized time budget is: AT <=1 + AR(X)
« remember, budget = actual cost plus Apotential

UW, Spring 2000 CSE 373: Data Structures and Algorithms 16
Pete Morcos

asidetrack

[axitan et s ax e Bea M s M larte e e e s e e e e e e e S

« It turns out that, for positive a, b, ¢
—Ifat+tb<=c
— Thenloga+logb<=2logc—-2
— (see book for proof)

« Interms of this problem, using sizes and ranks,
- 1f (8 + S(b) <= S(c)
— Then R(a) + R(b) <= 2 R(c) - 2

UW, Spring 2000 CSE 373: Data Structures and Algorithms 18
Pete Morcos

zZig-zag continued

[Exata e e e e SRSt e e e]

- © A)
® ©
i
IS VENVINONVLN

¢ Weended with AT <=2-2* R(X) + R(P) + R{(G)
* Weseethat S(P) + S(G) <= §(X)

— S0, R(P) + R{(G) <= 2 R{(X) — 2, using last dlide

— Thus, AT(zig-zag) <= 2* R(X) —2* R(X) =2 AR(X)
¢ A similar analysis holds for zig-zig:

— AT(zig-zig) <= 3AR(X)

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 19
Pete Morcos

Whew!

[axitan et e Max Baa M s M O+ (O (O (O [T - 0

« You don’'t have to remember all thisanaysis for splay trees
¢ Theimportant points are:
— What asplay treeis
— How asplay tree works
+ Rotation details of splaying
+ Find(X)—search normally, then splay X, or last node seen if X not found
 Insert(X)—insert normally, then splay X
— Max cogt of asingle splay is O(N)
+ But al those rotations make future accesses faster
— Amortized cogt of asingle splay is O(log N)
+ Any sequence of M operations costs O(M log N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms 2
Pete Morcos

Amortization is not Average-case!

O O O T O [T [T O T

* Amortized analysis says
— Thereare N operations
— Show that together, all N ops cost < C no matter what
— Then amortized cost isthe average cost C/ N
« We take the average of several steps used to process an
input, true for any input!
« Average-case andysis says
— Thereare Z possible inputs
— Show that total cost of al inputsis X
— Then the average cost of running the programis X / Z
« We take the average of several inputs, but some inputs may
be worse than average!

e

UW, Spring 2000 CSE 373: Data Structures and Algorithms 2
Pete Morcos

Putting it together

We have:

- AT(zig) <= 1+ AR(X) <=1+3[R(X) -R(X)]

- AT(zig-zag) <= 2AR(X) <=3 [R(X) —R(X)]

— AT(zig-zig) <= 3AR(X) <=3[R(X) —=R(X)]

We repest the steps until X replaces the root R

— zig only happens once, so the 1 is only added once

— Eachtime, the last R(X) is cancelled by the next —-R(X)
Theonly termsleft are: AT(total) <= 1 + 3*[R,;(X) — Riniia(X)]
Riniia(X) could be aslow as 0, R,(X) ashighaslog N
Thus, total budget for whole sequenceis O(log N)

UW, Spring 2000 CSE 373: Data Structures and Algorithms 20
Pete Morcos

Amortization Summary

aeste e e e e s e M

[ax i an e s

« If worst case cost can’t happen every time, amortization may
give atighter bound
— Worgt case often makes many future steps cheaper
— Actual cost usually complex, and varies each step—hard to use
« Trick isto simplify a complex cost function by adding a
potential
— actua cost + Apotential = simpler function (the amortized budget)
« Potential starts at its minimum (usually zero)
— If it could later drop below start value, we'd be over budget!
« Amortization useful when thinking about arbitrary sequences
of mixed operations (“N Inserts, M Deletes, etc.”)
— Must use same potential function to analyze each one

e

UW, Spring 2000 CSE 373: Data Structures and Algorithms 2
Pete Morcos

