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Back to Binomial Queues

• Recall BQ operations
– Merge

– Insert

– DeleteMin
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BQ Analysis

• How long does it take to build a BQ with N Inserts?
• A BQ can contain up to log N trees, so worst-case 

time for Insert is O(log N)
– Leading us to believe O(N log N) for total cost

• Actually, it’s only O(N)
– In contrast, N Inserts on a heap are O(N log N)
– But, there was an O(N) method called BuildHeap

• We need a better analysis technique than just 
multiplying the worst case for an individual 
operation by the number of ops
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A Pattern

• Count the work done for each 
insertion
– Cost varies each time
– But, we can write an expression that 

is the same for each step
– Let Ti = # of trees at step i
– (Ti – Ti-1) + Ci = 2
– Each time we add a tree, the step is 

cheap
– When we remove trees, the step is 

more expensive

• Key observation:
– Worst case (log N) can’t happen 

every time
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The Potential

• The number of trees is called the potential; a 
bookkeeping device
– Think of it as a bank account

• We give each Insert a “budget” of 2 work units
– i.e., Insert has an “amortized cost” of O(1), even though 

its worst-case cost is O(log N)

• The potential tracks how much “credit” we’ve 
accumulated by doing under-budget operations

• The potential is non-negative (# of trees), so we 
know we never go into “debt”
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BQ Potential

• As we observed before,
– cost + ∆P = 2

• For any sequence of N steps
– Σ (cost + ∆P) = 2N

– Σ cost = 2N – Σ ∆P

– But, Σ ∆P = P, and P ≥ 0

– So, Σ cost ≤ 2N = O(N)

• Key points for amortization:
– P begins at its minimum value

– cost + ∆P is a simple function (the “budget”)
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Why Amortize?

• We could have just figured out the total cost by hand
– Costs form an interesting regular pattern; remember the 

draw_ruler homework?

• But that would only be valid for sequences of 
nothing but Inserts
– Throwing in a DeleteMin would violate the calculation

• However, using the same potential, DeleteMin can be 
shown to have amortized cost of O(log N)
– Thus, any sequence of M DeleteMins and N Inserts costs 

O(N + M log N)
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Splay Trees—a new ADT

• A splay tree is a binary search tree

• We know that an unbalanced tree has O(N) worst 
case behavior
– A sequence of M operations is, then, O(MN)

• AVL trees used rotations to keep tree balanced, 
giving worst case time of O(M log N)

• Splay trees can be unbalanced, but each time a 
node is accessed, we move it to the root via 
splaying
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Splaying

• After accessing a node, we have to move it
– If we didn’t, repeated operations would cost the same.  If 

the node was deep [O(N)], the total cost will be too high.

– We choose to move it all the way to the root

• We have to maintain the binary search tree property

• AVL rotations were a way to move a node within a 
tree without destroying the property

• Repeated use of rotations can move a node all the 
way to the root
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Splay Rotations

• First, recall the two types of AVL rotation
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Not Good Enough

• Consider using single rotations to fix a typical worst-case 
tree 
– Worst [ O(MN) ] access pattern is 1, 1, 1, 1, ...

• Yes, 1 is at root, but other nodes all got worse
– There’s still a worst case pattern of 1, 2, 3, 4, 5, 1, 2, 3, ...
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zig-zig

• One more rotation type needed, to replace “zig” 
(single-rotation)
– This new rotation helps to balance the tree

– Only use single rotation when X’s parent is the root
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Using zig-zig

• Result is a wider, shallower tree
– 5 is still fairly shallow, unlike previous single rotation 

example

– No node is at depth 4 any more
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Splay Analysis Difficult

• Splaying can cause nodes to move down as well as up
– Even all the way down to N-1 depth
– Consider accessing 1, 2, 3, 4, 5 in previous example

• So any single operation could always cost O(N), even after 
we’ve done several splays

• The way we’ve done analysis so far, we’d be forced to say 
worst case for M operations is O(MN)

• Turns out not to be as bad as we think
– Splays do improve the tree; some operations will be better than 

O(N)

• We need a more sophisticated analysis, using amortization
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Splay Potential

• The potential function is more complex this time

• At each step i, let Si(X) = size of the subtree 
rooted at X (including X itself)

• Let Ri(X)= log Si(X), known as the rank of X

• Potential P = Σ Ri, over entire tree

• We want to compute an amortized bound on the 
total cost of a splay, which is an unknown 
sequence of zigs, zig-zags, and zig-zigs
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zig Amortized Time Cost

• actual cost is 1, and ∆Pot = ∆R(X) + ∆R(P)
– R(P) obviously decreases, so ∆R(P) is negative

– Thus, ∆Pot <= ∆R(X)

– and amortized time budget is:  AT <= 1 + ∆R(X)
• remember, budget = actual cost plus ∆potential

P

X

b

c

a

X

P

c

a

b

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

17

zig-zag Amortized Cost

• actual cost is 2, ∆Pot = ∆R(X) + ∆R(P) + ∆R(G)
– AT = 2 + [Rf(X) - Ri(X)] + [Rf(P) - Ri(P)] + [Rf(G) - Ri(G)]

– but Rf(X) = Ri(G), so

– AT = 2 - Ri(X) + [Rf(P) - Ri(P)] + Rf(G)

– and, since Ri(X) <= Ri(P),

– AT <= 2 – 2 * Ri(X) + Rf(P) + Rf(G)

P

X

c

a

b

G

d P G

ca b

X

d

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

18

a sidetrack

• It turns out that, for positive a, b, c
– If a + b <= c

– Then log a + log b <= 2 log c – 2

– (see book for proof)

• In terms of this problem, using sizes and ranks,
– If S(a) + S(b) <= S(c)

– Then R(a) + R(b) <= 2 R(c) - 2
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zig-zag continued

• We ended with AT <= 2 – 2 * Ri(X) + Rf(P) + Rf(G)
• We see that Sf(P) + Sf(G) <= Sf(X) 

– So, Rf(P) + Rf(G) <= 2 Rf(X) – 2, using last slide
– Thus, AT(zig-zag) <= 2 * Rf(X) – 2 * Ri(X) = 2 ∆R(X)

• A similar analysis holds for zig-zig:
– AT(zig-zig) <= 3 ∆R(X)
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Putting it together

• We have:
– AT(zig) <= 1 + ∆R(X) <= 1 + 3 [Rf(X) – Ri(X)]

– AT(zig-zag) <= 2 ∆R(X) <= 3 [Rf(X) – Ri(X)]

– AT(zig-zig) <= 3 ∆R(X) <= 3 [Rf(X) – Ri(X)]

• We repeat the steps until X replaces the root R
– zig only happens once, so the 1 is only added once

– Each time, the last Rf(X) is cancelled by the next –Ri(X)

• The only terms left are: AT(total) <= 1 + 3*[Rroot(X) – Rinitial(X)]

• Rinitial(X) could be as low as 0, Rroot(X) as high as log N

• Thus, total budget for whole sequence is O(log N)
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Whew!

• You don’t have to remember all this analysis for splay trees

• The important points are:
– What a splay tree is

– How a splay tree works
• Rotation details of splaying

• Find(X)—search normally, then splay X, or last node seen if X not found

• Insert(X)—insert normally, then splay X

– Max cost of a single splay is O(N)
• But all those rotations make future accesses faster

– Amortized cost of a single splay is O(log N)
• Any sequence of M operations costs O(M log N)
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Amortization Summary

• If worst case cost can’t happen every time, amortization may 
give a tighter bound
– Worst case often makes many future steps cheaper
– Actual cost usually complex, and varies each step—hard to use

• Trick is to simplify a complex cost function by adding a 
potential
– actual cost + ∆potential = simpler function (the amortized budget)

• Potential starts at its minimum (usually zero)
– If it could later drop below start value, we’d be over budget!

• Amortization useful when thinking about arbitrary sequences 
of mixed operations (“N Inserts, M Deletes, etc.”)
– Must use same potential function to analyze each one
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Amortization is not Average-case!

• Amortized analysis says
– There are N operations
– Show that together, all N ops cost < C no matter what
– Then amortized cost is the average cost C / N

• We take the average of several steps used to process an 
input, true for any input!

• Average-case analysis says
– There are Z possible inputs
– Show that total cost of all inputs is X
– Then the average cost of running the program is X / Z

• We take the average of several inputs, but some inputs may 
be worse than average!


