CSE 373：Amortized Analysis \＆Splay Trees

Pete Morcos
University of Washington 5／15／00
$\qquad$
$\qquad$

## BQ Analysis

为
－How long does it take to build a BQ with N Inserts？
－A BQ can contain up to $\log \mathrm{N}$ trees，so worst－case time for Insert is $\mathrm{O}(\log \mathrm{N})$
－Leading us to believe $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ for total cost
－Actually，it＇s only $\mathrm{O}(\mathrm{N})$
－In contrast， N Inserts on a heap are $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
－But，there was an $\mathrm{O}(\mathrm{N})$ method called BuildHeap
－We need a better analysis technique than just multiplying the worst case for an individual operation by the number of ops

[^0]
## The Potential

为
－The number of trees is called the potential；a bookkeeping device
－Think of it as a bank account
－We give each Insert a＂budget＂of 2 work units
－i．e．，Insert has an＂amortized cost＂of O（1），even though its worst－case cost is $\mathrm{O}(\log \mathrm{N})$
－The potential tracks how much＂credit＂we＇ve accumulated by doing under－budget operations
－The potential is non－negative（\＃of trees），so we know we never go into＂debt＂

UW，Spring 2000
CSE 373：Data Structures and Algorithms
－Recall BQ operations
－Merge
－Insert
－DeleteMin


## A Pattern

車
－Count the work done for each insertion
－Cost varies each time
－But，we can write an exp is the same for each step
－Let $\mathrm{T}_{i}=$ \＃of trees at step $i$
$-\left(\mathrm{T}_{i}-\mathrm{T}_{i-I}\right)+\mathrm{C}_{i}=2$
－Each time we add a tree，the step is cheap
－When we remove trees，the step is more expensive
－Key observation：
－Worst case $(\log \mathrm{N})$ can＇t happen
$\xrightarrow[\text { UW，Spring 2000 }]{\text { every tim }}$
CSE 373：Data Sructures and Algorithms

## BQ Potential

－As we observed before，

- cost $+\Delta \mathrm{P}=2$
－For any sequence of N steps
$-\Sigma(\operatorname{cost}+\Delta \mathrm{P})=2 \mathrm{~N}$
$-\Sigma$ cost $=2 \mathrm{~N}-\Sigma \Delta \mathrm{P}$
－But，$\Sigma \Delta \mathrm{P}=\mathrm{P}$ ，and $\mathrm{P} \geq 0$
- So，$\Sigma$ cost $\leq 2 \mathrm{~N}=\mathrm{O}(\mathrm{N})$
－Key points for amortization：
－ P begins at its minimum value

| Previous tree | $\begin{array}{\|c} \hline \text { old } \\ \mathrm{P} \end{array}$ | Insert cost | $\Delta \mathrm{P}$ |
| :---: | :---: | :---: | :---: |
|  | 0 | 1 | ＋1 |
| $\mathrm{B}_{0}$ | 1 | 2 | 0 |
| $\mathrm{B}_{1}$ | 1 | 1 | ＋1 |
| $\mathrm{B}_{0} \mathrm{~B}_{1}$ | 2 | 3 | －1 |
| $\mathrm{B}_{2}$ | 1 | 1 | ＋1 |
| $\mathrm{B}_{0} \quad \mathrm{~B}_{2}$ | 2 | 2 | 0 |
| $\mathrm{B}_{1} \quad \mathrm{~B}_{2}$ | 2 | 1 | ＋1 |
| $\mathrm{B}_{0} \quad \mathrm{~B}_{1} \quad \mathrm{~B}_{2}$ | 3 | 4 | －2 |
| $\mathrm{B}_{3}$ | 1 |  |  |

$-\operatorname{cost}+\Delta \mathrm{P}$ is a simple function（the＂budget＂）
UW，Spring 2000 CSE 373：Data Structures and Algorithms

## Why Amortize?

- We could have just figured out the total cost by hand - Costs form an interesting regular pattern; remember the draw_ruler homework?
- But that would only be valid for sequences of nothing but Inserts
- Throwing in a DeleteMin would violate the calculation
- However, using the same potential, DeleteMin can be shown to have amortized cost of $\mathrm{O}(\log \mathrm{N})$
- Thus, any sequence of M DeleteMins and N Inserts costs $\mathrm{O}(\mathrm{N}+\mathrm{M} \log \mathrm{N})$

UW, Spring 2000
CSE 373: Data Structures and Algorithms

## Splaying

- After accessing a node, we have to move it
- If we didn't, repeated operations would cost the same. If the node was deep $[\mathrm{O}(\mathrm{N})]$, the total cost will be too high.
- We choose to move it all the way to the root
- We have to maintain the binary search tree property
- AVL rotations were a way to move a node within a tree without destroying the property
- Repeated use of rotations can move a node all the way to the root

$$
\begin{array}{ll}
\text { UW, Spring 2000 } & \text { CSE 373: Data Structures and Algorithms } \\
\text { Pete Morcos }
\end{array}
$$

## Not Good Enough

为

- Consider using single rotations to fix a typical worst-case tree
- Worst $[\mathrm{O}(\mathrm{MN})]$ access pattern is $1,1,1,1, \ldots$
- Yes, 1 is at root, but other nodes all got worse
- There's still a worst case pattern of $1,2,3,4,5,1,2,3, \ldots$




## Splay Trees-a new ADT

- A splay tree is a binary search tree
- We know that an unbalanced tree has $\mathrm{O}(\mathrm{N})$ worst case behavior
- A sequence of M operations is, then, $\mathrm{O}(\mathrm{MN})$
- AVL trees used rotations to keep tree balanced, giving worst case time of $\mathrm{O}(\mathrm{M} \log \mathrm{N})$
- Splay trees can be unbalanced, but each time a node is accessed, we move it to the root via splaying

```
UW, Spring 2000
```

CSE 373: Data Structures and Algorithms

## Splay Rotations

■ $\rightarrow$ ■

[^1]

## zig-zig

- One more rotation type needed, to replace "zig" (single-rotation)
- This new rotation helps to balance the tree
- Only use single rotation when X's parent is the root

$\square$


UW, Spring 2000

## Using zig-zig

- Result is a wider, shallower tree
- 5 is still fairly shallow, unlike previous single rotation example
- No node is at depth 4 any more


$$
\underbrace{\text { Pete Morcos }}_{\text {CSE 373: Data Stuctures and Algorithms }}
$$



## Splay Potential



- The potential function is more complex this time
- At each step $i$, let $S_{i}(X)=$ size of the subtree rooted at X (including X itself)
- Let $\mathrm{R}_{i}(\mathrm{X})=\log \mathrm{S}_{i}(\mathrm{X})$, known as the rank of X
- Potential $\mathrm{P}=\Sigma \mathrm{R}_{i}$, over entire tree
- We want to compute an amortized bound on the total cost of a splay, which is an unknown sequence of zigs, zig-zags, and zig-zigs
$\qquad$ CSE 373: Data Structures and Algorithms
- but $R_{f}(X)=R_{i}(G)$, so
$-\mathrm{AT}=2-\mathrm{R}_{\mathrm{i}}(\mathrm{X})+\left[\mathrm{R}_{\mathrm{f}}(\mathrm{P})-\mathrm{R}_{\mathrm{i}}(\mathrm{P})\right]+\mathrm{R}_{\mathrm{f}}(\mathrm{G})$
- and, since $R_{i}(X)<=R_{i}(P)$,
$-\mathrm{AT}<=2-2 * \mathrm{R}_{\mathrm{i}}(\mathrm{X})+\mathrm{R}_{\mathrm{f}}(\mathrm{P})+\mathrm{R}_{\mathrm{f}}(\mathrm{G})$
UW, Spring 2000
CSE 373: Data Structures and Algorithms

Splay Analysis Difficult

- Splaying can cause nodes to move down as well as up - Even all the way down to N - 1 depth
- Consider accessing 1, 2, 3, 4, 5 in previous example
- So any single operation could always cost $\mathrm{O}(\mathrm{N})$, even after we've done several splays
- The way we've done analysis so far, we'd be forced to say worst case for M operations is $\mathrm{O}(\mathrm{MN})$
- Turns out not to be as bad as we think - Splays do improve the tree; some operations will be better than $\mathrm{O}(\mathrm{N})$
- We need a more sophisticated analysis, using amortization UW, Spring 2000 CSE 373: Data Structures and Algorithms CSE 373: Data Structures and Algorithms ${ }^{14}$

zig Amortized Time Cost




- actual cost is 1 , and $\Delta \mathrm{Pot}=\Delta \mathrm{R}(\mathrm{X})+\Delta \mathrm{R}(\mathrm{P})$
$-R(P)$ obviously decreases, so $\Delta R(P)$ is negative
- Thus, $\Delta$ Pot $<=\Delta \mathrm{R}(\mathrm{X})$
- and amortized time budget is: AT $<=1+\Delta R(X)$
- remember, budget $=$ actual cost plus $\Delta$ potential

UW, Spring 2000
CSE 373: Data Structures and Algorithms
a sidetrack

- It turns out that, for positive $a, b, c$
- If $\mathrm{a}+\mathrm{b}<=\mathrm{c}$
- Then $\log \mathrm{a}+\log \mathrm{b}<=2 \log \mathrm{c}-2$
- (see book for proof)
- In terms of this problem, using sizes and ranks,
- If $S(a)+S(b)<=S(c)$
- Then $R(a)+R(b)<=2 R(c)-2$

UW, Spring 2000


■

- You don't have to remember all this analysis for splay trees
- The important points are:
- What a splay tree is
- How a splay tree works
- Rotation details of splaying
- Find $(X)$-search normally, then splay $X$, or last node seen if $X$ not found
- Insert(X)-insert normally, then splay X
- Max cost of a single splay is $\mathrm{O}(\mathrm{N})$
- But all those rotations make future accesses faster
- Amortized cost of a single splay is $\mathrm{O}(\log \mathrm{N})$
- Any sequence of M operations costs $\mathrm{O}(\mathrm{M} \log \mathrm{N})$

$$
\begin{aligned}
& \text { CSE 373: Data Structures and Algorithms } \\
& \text { Pete Morcos }
\end{aligned}
$$

## Putting it together

- We have:
- $\mathrm{AT}(\mathrm{zig})<=1+\Delta \mathrm{R}(\mathrm{X}) \quad<=1+3\left[\mathrm{R}_{\mathrm{f}}(\mathrm{X})-\mathrm{R}_{\mathrm{i}}(\mathrm{X})\right]$
- AT(zig-zag) $<=2 \Delta \mathrm{R}(\mathrm{X}) \quad<=3\left[\mathrm{R}_{\mathrm{f}}(\mathrm{X})-\mathrm{R}_{\mathrm{i}}(\mathrm{X})\right]$
- AT(zig-zig) $<=3 \Delta \mathrm{R}(\mathrm{X}) \quad<=3\left[\mathrm{R}_{\mathrm{f}}(\mathrm{X})-\mathrm{R}_{\mathrm{i}}(\mathrm{X})\right]$
- We repeat the steps until $X$ replaces the root $R$
- zig only happens once, so the 1 is only added once
- Each time, the last $R_{f}(X)$ is cancelled by the next $-R_{i}(X)$
- The only terms left are: AT(total) $<=1+3 *\left[\mathrm{R}_{\text {root }}(\mathrm{X})-\mathrm{R}_{\text {initial }}(\mathrm{X})\right]$
- $\mathrm{R}_{\text {initial }}(\mathrm{X})$ could be as low as $0, \mathrm{R}_{\text {root }}(\mathrm{X})$ as high as $\log \mathrm{N}$
- Thus, total budget for whole sequence is $\mathrm{O}(\log \mathrm{N})$

UW, Spring 2000
${ }^{20}$

CSE 373: Data Structures and Algorithms

Amortization is not Average-case!


- Amortized analysis says
- There are N operations
- Show that together, all N ops cost < C no matter what
- Then amortized cost is the average cost $\mathrm{C} / \mathrm{N}$
- We take the average of several steps used to process an input, true for any input!
- Average-case analysis says
- There are Z possible inputs
- Show that total cost of all inputs is X
- Then the average cost of running the program is X / Z
- We take the average of several inputs, but some inputs may be worse than average!

UW, Spring 2000 CSE 373: Data Stuctures and Algorithms

## Amortization Summary

- If worst case cost can't happen every time, amortization may give a tighter bound
- Worst case often makes many future steps cheaper
- Actual cost usually complex, and varies each step-hard to use
- Trick is to simplify a complex cost function by adding a potential
- actual cost $+\Delta$ potential $=$ simpler function (the amortized budget)
- Potential starts at its minimum (usually zero)
- If it could later drop below start value, we'd be over budget!
- Amortization useful when thinking about arbitrary sequences of mixed operations ("N Inserts, M Deletes, etc.")
- Must use same potential function to analyze each one

UW, Spring 2000


[^0]:    UW，Spring 2000
    CSE 373：Data Stuctures and Algorithms

[^1]:    - First, recall the two types of AVL rotation

