CSE 373: Amortized Analysis & Splay Trees

Pete Morcos University of Washington 5/15/00

http://www.cs.washington.edu/education/courses/cse373/00sp

Back to Binomial Queues

- Recall BQ operations
 - Merge
 - Insert

- DeleteMin

BQ Analysis

- <u></u>
- How long does it take to build a BQ with N Inserts?
- A BQ can contain up to log N trees, so worst-case time for Insert is O(log N)
- Leading us to believe $O(N \log N)$ for total cost
- Actually, it's only O(N)
 - In contrast, N Inserts on a heap are O(N log N)
 - But, there was an O(N) method called BuildHeap
- We need a better analysis technique than just multiplying the worst case for an individual operation by the number of ops

UW, Spring 2000

UW, Spring 2000

CSE 373: Data Structures and Algorithms Pete Morcos

A Pattern

Count the work done for each
 before insert after insert cost

В,

B₁ B

B₀ B₁ B₂

B,

 \mathbb{B}_2

Previous tree

B₁

Β1

B₀ B₁

B₀ B₁

B₀ B

B₀

B,

B₀ B₁

B-

 $B_1 \quad B_2$

B₁ B₂

2

2

B₃ 4 B₂ 1

- insertion
- Cost varies each time
- But, we can write an expression that is the same for each step
- Let T_i = # of trees at step i
- Let $T_i = \#$ of trees at step - $(T_i - T_{i-1}) + C_i = 2$
- (I_i I_{i-1}) + C_i = 2
 Each time we add a tree, the step is cheap
- When we remove trees, the step is more expensive
- Key observation:
 - Worst case (log N) can't happen

every time UW, Spring 2000 CSE 373: Data Structures and Algorithms Pete Morcos

The Potential

- The number of trees is called the *potential*; a bookkeeping device
 - Think of it as a bank account
- We give each Insert a "budget" of 2 work units - i.e., Insert has an "amortized cost" of O(1), even though
- its worst-case cost is O(log N)The potential tracks how much "credit" we've
- accumulated by doing under-budget operations • The potential is non-negative (# of trees), so we
- know we never go into "debt"

CSE 373: Data Structures and Algorithms Pete Morcos

5

BQ Potential

- As we observed before,
- $-\cos t + \Delta P = 2$

- For any sequence of N steps
 - $-\Sigma (\cos t + \Delta P) = 2N$
 - $-\Sigma \cos t = 2N \Sigma \Delta P$ $-But, \Sigma \Delta P = P, and P \ge 0$
 - So, $\Sigma \cos t \le 2N = O(N)$
- Key points for amortization:
- P begins at its minimum value
- $\begin{array}{c} cost + \Delta P \text{ is a simple function (the "budget")} \\ {}_{UW, \, Spring \, 2000} \\ {}_{CSE \, 373: \, Data \, Structures \, and \, Algorithms} \\ {}_{Pete \, Morcos} \end{array}$
- B 1 1 +1 \mathbb{B}_2 2 2 0 1 +1 B₂ 2 B₂ 3 4 - 2 1 B. 6

2 0

+1

-1

old Insert ΔF

P cost

0 1 +1

1

1 1

2 3

Why Amortize?

- We could have just figured out the total cost by hand Costs form an interesting regular pattern; remember the draw_ruler homework?
- · But that would only be valid for sequences of nothing but Inserts
- Throwing in a DeleteMin would violate the calculation · However, using the same potential, DeleteMin can be
- shown to have amortized cost of O(log N) Thus, any sequence of M DeleteMins and N Inserts costs $O(N + M \log N)$

UW, Spring 2000 CSE 373: Data Structures and Algorith Pete Morcos

Splay Trees-a new ADT

· A splay tree is a binary search tree

• We know that an unbalanced tree has O(N) worst case behavior

- A sequence of M operations is, then, O(MN)

- · AVL trees used rotations to keep tree balanced, giving worst case time of O(M log N)
- Splay trees can be unbalanced, but each time a node is accessed, we move it to the root via splaying

UW, Spring 2000 CSE 373: Data Structures and Alge Pete Morcos

...→...→...→...→...

Splaying

· After accessing a node, we have to move it

- If we didn't, repeated operations would cost the same. If the node was deep [O(N)], the total cost will be too high. - We choose to move it all the way to the root

- · We have to maintain the binary search tree property • AVL rotations were a way to move a node within a
- tree without destroying the property
- · Repeated use of rotations can move a node all the way to the root

UW, Spring 2000

CSE 373: Data Structures and Algorithms Pete Morcos

Not Good Enough

᠈ᡅᢣᢍᢣᢍᢣᢍᢣᢍᢣᢍᢣᢍᢣᢍᢣᢁᢣᢁᢣᢁᢣᢍᢣᢍᢣᢁ · Consider using single rotations to fix a typical worst-case tree

Worst [O(MN)] access pattern is 1, 1, 1, 1, ... Yes, 1 is at root, but other nodes all got worse There's still a worst case pattern of 1, 2, 3, 4, 5, 1, 2, 3, ...

zig-zig

Using zig-zig

+ ... + ... + ... + ... + ... + ... + ... + ... + ... + ...

example – No node is at depth 4 any more

......

Splay Analysis Difficult

16

18

- Splaying can cause nodes to move down as well as up
 Even all the way down to N-1 depth
- Consider accessing 1, 2, 3, 4, 5 in previous example

- So any *single* operation could always cost O(N), even after we've done several splays
- The way we've done analysis so far, we'd be forced to say worst case for M operations is O(MN)
- Turns out not to be as bad as we think
 Splays do improve the tree; some operations will be better than O(N)
- · We need a more sophisticated analysis, using amortization

UW, Spring 2000	CSE 373: Data Structures and Algorithms	1
	Pete Morcos	

Splay Potential

- The potential function is more complex this time
- At each step *i*, let $S_i(X)$ = size of the subtree
- rooted at X (including X itself)
 Let R_i(X)= log S_i(X), known as the *rank* of X
- Potential $P = \Sigma R_i$, over entire tree
- We want to compute an amortized bound on the total cost of a splay, which is an unknown sequence of zigs, zig-zags, and zig-zigs

UW, Spring 2000

CSE 373: Data Structures and Algorithms Pete Morcos

zig Amortized Time Cost

UW, Spring 2000

CSE 373: Data Structures and Algorithms Pete Morcos

zig-zag Amortized Cost

a sidetrack

- It turns out that, for positive a, b, c
- If $a + b \leq c$
- $\ Then \ log \ a + log \ b <= 2 \ log \ c 2$
- (see book for proof)
- · In terms of this problem, using sizes and ranks,

CSE 373: Data Structures and Algo Pete Morcos

- $If S(a) + S(b) \le S(c)$
- Then $R(a) + R(b) \le 2 R(c) 2$

UW, Spring 2000

3

zig-zag continued

 $- AT(zig-zig) \le 3 \Delta R(X)$

• The important points are:

- How a splay tree works

· Rotation details of splaying

- Max cost of a single splay is O(N)

• Insert(X)-insert normally, then splay X

· But all those rotations make future accesses faster Amortized cost of a single splay is O(log N)

Any sequence of M operations costs O(M log N)

CSE 373: Data Structures and Algorithms Pete Morcos

- What a splay tree is

UW, Spring 2000

UW, Spring 2000 CSE 373: Data Structures and Algorithms Pete Morcos

Whew!

• You don't have to remember all this analysis for splay trees

• Find(X)—search normally, then splay X, or last node seen if X not found

Putting it together

□→□→□→□→□→□→□ ...→...→...→...→...→...→... ------

• We have:

UW, Spring 2000

- $AT(zig) \le 1 + \Delta R(X)$ $<= 1 + 3 [R_i(X) - R_i(X)]$
- $AT(zig-zag) \le 2 \Delta R(X) \le 3 [R_t(X) R_i(X)]$
- $\ AT(zig\text{-}zig) <= 3 \ \Delta R(X) \qquad <= 3 \ [R_{f}(X) R_{i}(X)]$
- We repeat the steps until X replaces the root R - zig only happens once, so the 1 is only added once - Each time, the last $R_i(X)$ is cancelled by the next $-R_i(X)$
- The only terms left are: $AT(total) \le 1 + 3*[R_{root}(X) R_{initial}(X)]$

CSE 373: Data Structures and Algorithms Pete Morcos

20

22

- $R_{initial}(X)$ could be as low as 0, $R_{root}(X)$ as high as log N
- Thus, total budget for whole sequence is O(log N)

21

23

- <u>a→a→a→a→a→a</u> *****
 - If worst case cost can't happen every time, amortization may give a tighter bound

Amortization Summary

- Worst case often makes many future steps cheaper Actual cost usually complex, and varies each step-hard to use
- · Trick is to simplify a complex cost function by adding a potential
- actual cost + Δpotential = simpler function (the amortized budget) Potential starts at its minimum (usually zero)
- If it could later drop below start value, we'd be over budget! · Amortization useful when thinking about arbitrary sequences
- of mixed operations ("N Inserts, M Deletes, etc.") - Must use same potential function to analyze each one

UW, Spring 2000

CSE 373: Data Structures and Algorithms Pete Morcos

Amortization is not Average-case!

- · Amortized analysis says
- There are N operations - Show that together, all N ops cost < C no matter what
- Then amortized cost is the average cost C / N
- We take the average of several steps used to process an input, true for *any* input!
- Average-case analysis says
 - There are Z possible inputs
 - Show that total cost of all inputs is X
 - Then the average cost of running the program is X / Z
 - We take the average of several inputs, but some inputs may be worse than average!

CSE 373: Data Structures and Algorithms Pete Morcos UW, Spring 2000