
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Algorithmic Techniques

Pete Morcos

University of Washington

5/22/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

Character Encoding

• Consider saving the string “ha ha tee hee hey!”
into a file

• How much space do we need?

• Well, there are only 7 characters, so we could just
use 3 bits per character
– h=000, a=001, t=010, e=011, y=100, !=101, spc=110

• 18 chars * 3 bits = 54 bits

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Non-uniform coding

• We can improve our result by noticing that some
characters are more frequent than others
– Use shorter codes for those

• Representing the code as a tree helps make it clear

h a t e y ! sp

1104space

1011!

1001y

0115e

0101t

0012a

0004h

codefrequencysymbol

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

Huffman Coding

• Huffman coding is another example of a greedy
algorithm

• Given symbol frequencies, it constructs an
encoding tree
– Start with N independent symbols

– Take the two least frequent symbols
• Merge them under a new pseudo-symbol parent

• Parent frequency is sum of two children

– Repeat until single tree is formed

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Huffman example

h:4 a:2 t:1 e:5 y:1 !:1 sp:4

11space

0111!

0110y

00e

0101t

0100a

10h

codesymbol

h:4 a:2 t:1 e:5 y:1 !:1 sp:4

s1:2

h:4 a:2 t:1 e:5 y ! sp:4

s1:2s2:3

h:4 a te:5 y ! sp:4

s1:2s2:3

s3:5

e:5 a t h:4y ! sp:4

s3:5

s4:8

e:5

a t hy ! sp

s3:5

s4:8

s5:10

e

a t

h

y !

sp

Only 46 bits needed to encode message now.

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Huffman Properties

• The Huffman algorithm generates the optimal encoding
tree of this type

• An important property is that no symbol’s code is a prefix
of another symbol’s code
– If this happened, decoding would be ambiguous

• Note that when saving the data, we must prepend the
encoding somehow
– For small messages, this can actually expand the file!

• This coding assumes all characters occur independently
– A more sophisticated scheme might notice, for example, that ‘q’ is

always followed by ‘u’, and not use any bits for the ‘u’

2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Closest Points Problem

• Given N points in a plane, find the pair closest to
each other

• Belongs to a class of problems known as
computational geometry

• Naïve algorithm: compute distance between every
possible pair
– Obviously requires O(N2) time

– Also only uses O(1) space

• We can improve this to O(N log N) time

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Example Problem (N=8), naive solution

• There are 8(8-1)/2
= 28 distances to
compute:
– AB, AC, AD, AE,

AF, AG, AH
– BC, BD, BE, BF,

BG, BH
– CD, CE, CF, CG,

CH
– DE, DF, DG, DH
– EF, EG, EH
– FG, FH
– GH

D

A

E

B

C

G

H
F

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Divide and Conquer

• Divide and Conquer involves breaking a problem
into easier subproblems, and merging those
solutions into the full answer
– We’ve seen quicksort and mergesort, for example

• In this case, the insight is that if we divide the
plane into two halves, the closest pair must be
either:
– Both in left half—find them using a recursive call
– Both in right half—find them using a recursive call
– One in left, one in right—find them some other way

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Divide

• To speed things up, we will presort the set of
points by their x coordinate
– This costs O(N log N), so our final solution will be at

least that expensive asymptotically

• Now it takes O(1) time to divide the set in half
– Just pick the array index halfway between the bounds

• Our recurrence now looks like this:
– T(N) = 2 T(N/2) + f(N)
– To get O(N log N), f(N) must be O(N); that’s how

much work we’re allowed to do to merge the answers

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Divide Example

• Obviously, base case is N=1 or 2

• Sorted by x, we get
EADHFBCG

• Subcalls are:
– EADH

• EA

• DH

– FBCG
• FB

• CG

• Assume recursion works
correctly; final result will return:

– DL = 10 (EA) and DR = 8 (CG)

D

A

E

B

C

G

H
F

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

Conquer

• The recursions will find the closest pairs in the left
or right halves (N/2 points in each half)
– Call those distances DL and DR; let D=min(DL,DR)

• We must test whether there is a pair of points that
cross the boundary and are closer than D

• There are (N/2) * (N/2 – 1) / 2 possible crossing
pairs
– That’s O(N2) work

– Need way to limit work done at each merge to O(N)

3

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

13

Conquer using strips

• Key point is that the points must each be within
D distance of the dividing line
– Otherwise no way their distance is < D

• So, restrict search to points within a strip of
width 2D
– In example, A, W, Z, X, Y, H

• If points are randomly distributed, on average
O(√N) points in each strip
– So average case work is O(N)—ok

• But in worst-case could have all N points within
the two strips
– Worst-case is still O(N2)—not ok

X

A

E

H

D

D D

W

Y

Z

sorted by x:
EQAWZXYHR

Q

R

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

14

Improving strips

• As described, strips remove from consideration all
points more than 2D apart in the x direction

• We must also throw out points that are too distant
in the y direction

• Suppose for a moment that we had the points in
the strip sorted by y
– (Not obvious we can do this in O(N) time)

– For each point, only try other points that are less than D
greater in y

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

15

Improved strips example

• Consider X as the first point
– W is within D below
– X-W has shorter distance D’

• Can just use this shorter distance in future tests

• Consider W
– No points are vertically near

• Consider Y
– A is within D’ below
– But Y-A are not closer than D’

• etc...A, Z, H don’t have nearby points

• Final result: closest pair is W-X, D’ distance

X

A

E

H

D

D D

W

Y

Z

sorted by x: EQAWZXYHR

Q

R

D

D’

D’

strip sorted by y: XWYAZH

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

16

Improved strips analysis

• Recall our recurrence: T(N) = 2 T(N/2) + f(N)
– We want f(N) to be O(N)

• Work done in merge (“conquer”) step:
– Divide point set in half horizontally—O(1)

• There are O(N) points in each half worst-case

– Find points in strip near dividing line
• Could use an O(log N) binary search, since points are sorted by x

– Somehow sort strip by y coordinate [?? time ??]

– For each point in strip [O(N) worst-case]:
• Scan rest of strip for points within D distance vertically [?? time ??]

• For f(N) to be O(N), we must have: sorting by y is O(N),
scanning is O(1)

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

17

Final details (1)

• Sorting O(N) points in strip by y
– Seems to be O(N log N), which is too much work per step

– Trick: start with point set sorted by y (call this YLIST)

– At each step, do a linear scan of the sorted list
• If point is in left half, copy to LEFT_YLIST

• If point is in right half, copy to RIGHT_YLIST

• Pass these sublists to recursive calls

• For merge step, do linear scan of YLIST; remove items not in strip

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

18

Final details (2)

• For each point in strip, we scan all lower points within D
vertical distance
– N steps, so must have O(1) points to scan per step

• For each point, we scan a 2D x D area
– Strip is 2D wide, we scan up to D vertically

• At most 4 points on each side of
dividing line
– If there are any more, then recursions would have

returned a smaller distance than D!

– So, at most 7 other points need to be checked

– Not a function of N, so this is O(1)

A

E

H

D D

W Y

Z
Q

R

D

4

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

19

A full example

• Cut
XLIST in
half

• Scan
YLIST,
create two
sublists

• Recurse...

D

A

E

B

C

G

H
F

XLIST: EADHFBCG

YLIST: DCEGABFH

LEFT_YLIST: DEAH RIGHT_YLIST: CGBF

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

20

A full example (2)

• Recursion on left
half shown here

• Divide XLIST in
half

– Recursions are
simple

• Scan YLIST; keep
items in the strip

• No pair in strip is
closer than D

• Return D

D

A

E

H

XLIST: EADHFBCG

YLIST: DEAH

D

D D

STRIP_YLIST: DAH

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

21

A full example (3)

• Recursions
return
– min dist is

between CG

• Scan YLIST,
extract items
in strip (DFH)

• Do vertical
scan:
– From D: F is

too far down
– From F: H is

closest

D

A

E

B

C

G

H
F

XLIST: EADHFBCG

YLIST: DCEGABFH

D

D D

STRIP_YLIST: DFH

Note how few
comparisons had to

be made, vs. the
O(N2) naive version

given at the start.

