

CSE 373: Algorithmic Techniques

Pete Morcos
University of Washington
5/22/00
htp://www.cs.washington.edu/ducation/courses//ses373/00 sp

W \quad W

Non-uniform coding

We can improve our result by noticing that some characters are more frequent than others

- Use shorter codes for those
- Representing the code as a tree helps make it clear

Huffman example

Character Encoding

- Consider saving the string "ha ha tee hee hey!" into a file
- How much space do we need?
- Well, there are only 7 characters, so we could just use 3 bits per character
- $\mathrm{h}=000, \mathrm{a}=001, \mathrm{t}=010, \mathrm{e}=011, \mathrm{y}=100,!=101, \mathrm{spc}=110$
- 18 chars $* 3$ bits $=54$ bits

UW, Spring 2000 CSE 373: Data Structures and Algorithms

Huffman Coding

- Huffman coding is another example of a greedy algorithm
- Given symbol frequencies, it constructs an encoding tree
- Start with N independent symbols
- Take the two least frequent symbols
- Merge them under a new pseudo-symbol parent
- Parent frequency is sum of two children
- Repeat until single tree is formed

UW, Spring 2000
CSE 373: Data Structures and Algorithms

Huffman Properties

$T \rightarrow T \rightarrow \infty \rightarrow T \rightarrow \infty$

- The Huffman algorithm generates the optimal encoding tree of this type
- An important property is that no symbol's code is a prefix of another symbol's code
- If this happened, decoding would be ambiguous
- Note that when saving the data, we must prepend the encoding somehow
- For small messages, this can actually expand the file!
- This coding assumes all characters occur independently
- A more sophisticated scheme might notice, for example, that ' q ' is always followed by ' u ', and not use any bits for the ' u '

Uw, Spring 2000
CSE 373: Data Structures and Algorithms

Closest Points Problem

- Given N points in a plane, find the pair closest to each other
- Belongs to a class of problems known as computational geometry
- Naïve algorithm: compute distance between every possible pair
- Obviously requires $\mathrm{O}\left(\mathrm{N}^{2}\right)$ time
- Also only uses O(1) space
- We can improve this to $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time

UW, Spring 2000
CSE 373: Data Structures and Algorithms

Divide and Conquer

Divide and Conquer involves breaking a problem into easier subproblems, and merging those solutions into the full answer

- We've seen quicksort and mergesort, for example
- In this case, the insight is that if we divide the plane into two halves, the closest pair must be either:
- Both in left half-find them using a recursive call
- Both in right half-find them using a recursive call
- One in left, one in right-find them some other way

UW, Spring 2000
CSE 373: Data Structures and Algorithms

Divide Example

- Obviously, base case is $\mathrm{N}=1$ or 2
- Sorted by x, we get EADHFBCG
- Subcalls are
- EADH
- EA
- FBCG
- FB
- Assume recursion works
 correctly; final result will return: - $\mathrm{D}_{\mathrm{L}}=10(\mathrm{EA})$ and $\mathrm{D}_{\mathrm{R}}=8(\mathrm{CG})$

Example Problem ($\mathrm{N}=8$), naive solution

- There are $8(8-1) / 2$ $=28$ distances to compute:
- AB, AC, AD, AE, $\mathrm{AF}, \mathrm{AG}, \mathrm{AH}$
- BC, BD, BE, BF, BG, BH
- CD, CE, CF, CG CH
- DE, DF, DG, DH
- EF, EG, EH
- FG, FH
- GH

UW, Spring 2000
 CSE 373: Data Structures and Algorithms

Divide

- To speed things up, we will presort the set of points by their x coordinate
- This costs $\mathrm{O}(\mathrm{N} \log \mathrm{N})$, so our final solution will be at least that expensive asymptotically
- Now it takes $O(1)$ time to divide the set in half
- Just pick the array index halfway between the bounds
- Our recurrence now looks like this:
$-\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{f}(\mathrm{N})$
- To get $\mathrm{O}(\mathrm{N} \log \mathrm{N}), \mathrm{f}(\mathrm{N})$ must be $\mathrm{O}(\mathrm{N})$; that's how much work we're allowed to do to merge the answers

UW, Spring 2000

Conquer

- The recursions will find the closest pairs in the left or right halves ($\mathrm{N} / 2$ points in each half) - Call those distances D_{L} and D_{R}; let $D=\min \left(D_{L}, D_{R}\right)$
- We must test whether there is a pair of points that cross the boundary and are closer than D
- There are $(\mathrm{N} / 2) *(\mathrm{~N} / 2-1) / 2$ possible crossing pairs
- That's $\mathrm{O}\left(\mathrm{N}^{2}\right)$ work
- Need way to limit work done at each merge to $\mathrm{O}(\mathrm{N})$

UW, Spring 2000 CSE 373: Data Structures and Algorithms

Conquer using strips

Improved strips example

- Consider X as the first point - W is within D below - X-W has shorter distance D' - Can just use this shorter distance in future tests - Consider W - No points are vertically near - Consider Y - A is within D^{\prime} below - But Y-A are not closer than D' - etc...A, Z, H don't have nearby points - Final result: closest pair is W-X, D' distance	

Final details (1)

- Sorting $\mathrm{O}(\mathrm{N})$ points in strip by y
- Seems to be $O(N \log N)$, which is too much work per step
- Trick: start with point set sorted by y (call this YLIST)
- At each step, do a linear scan of the sorted list
- If point is in left half, copy to LEFT_YLIST
- If point is in right half, copy to RIGHT_YLIST
- Pass these sublists to recursive calls
- For merge step, do linear scan of YLIST; remove items not in strip

Improving strips

- As described, strips remove from consideration all points more than 2D apart in the x direction
- We must also throw out points that are too distant in the y direction
- Suppose for a moment that we had the points in the strip sorted by y
- (Not obvious we can do this in $\mathrm{O}(\mathrm{N})$ time)
- For each point, only try other points that are less than D greater in y

UW, Spring 2000

Improved strips analysis

[^0]Final details (2)

- For each point in strip, we scan all lower points within D vertical distance
- N steps, so must have $\mathrm{O}(1)$ points to scan per step
- For each point, we scan a $2 \mathrm{D} \times \mathrm{D}$ area
- Strip is 2D wide, we scan up to D vertically
- At most 4 points on each side of dividing line
- If there are any more, then recursions would have returned a smaller distance than D!
- So, at most 7 other points need to be checked
- Not a function of N , so this is $\mathrm{O}(1)$

UW, Spring 2000

A full example (2)

- Recursion on left
half shown here
- | Divide XLIST in |
| :--- |
| half |
| -Recursions are
 simple |
| - Scan YLIST; keep |
| items in the strip |
| - No pair in strip is |
| closer than D |
| Return D |

UW, Spring 2000

A full example (3)

Recursions	XLIST: EADHFBCG
return	YLIST: DCEGABFH
- min dist is	\downarrow
between CG	STRIP_YLIST: DFH
- Scan YLIST, extract items in strip (DFH)	${ }_{\mathrm{D}}^{\text {(C) }}$
- Do vertical scan:	Note how few
- From D: F is too far down	comparisons had to be made, vs. the
- FromF:His	$\mathrm{O}\left(\mathrm{N}^{2}\right)$ naive versio
closest D D	given at the start.
UW, Spring 2000 CSE 373: Data Structures and Algorithms Pete Morcos	21

[^0]: - Recall our recurrence: $T(N)=2 T(N / 2)+f(N)$
 - We want $\mathrm{f}(\mathrm{N})$ to be $\mathrm{O}(\mathrm{N})$
 - Work done in merge ("conquer") step:
 - Divide point set in half horizontally- $\mathrm{O}(1)$
 - There are $\mathrm{O}(\mathrm{N})$ points in each half worst-case
 - Find points in strip near dividing line
 - Could use an $O(\log N)$ binary search, since points are sorted by x
 - Somehow sort strip by y coordinate [?? time ??]
 - For each point in strip [$\mathrm{O}(\mathrm{N})$ worst-case]:
 - Scan rest of strip for points within D distance vertically [?? time ??]
 - For $f(N)$ to be $O(N)$, we must have: sorting by y is $O(N)$, scanning is $\mathrm{O}(1)$
 UW, Spring 2000 CSE 373: Data Structures and Algorithms $\begin{gathered}\text { Pete Morcos }\end{gathered} \quad 16$

