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Overview

• Basic math
– logs, exponents, summations
– inductive proofs

• Asymptotic analysis
– big-oh, big-theta, big-omega
– the nightmare of exponential algorithms
– costs of time and space

• Lists, Stacks, Queues
– details like header nodes, circular or double linking
– array or pointer implementations
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Overview

• Trees
– terms, height tends to be logarithmic (if balanced)

• Binary Search Trees
– how to Find, Insert; bad worst case behavior

• All operations might cost O(N)

– AVL trees for maintaining balance
• No operation costs more than O(log N)

– Splay trees for good amortized performance
• One operation might be O(N), but overall they average to 

O(log N)

– Idea of “rotation” to rearrange the tree
– Lazy deletion
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Overview

• Hash tables
– Collision strategies: chaining, probing

– Trade space to gain time

• Heaps (Priority Queues)
– Array implementation

– BuildHeap can be done in O(N)

• Binomial Queues
– Merge operation is fast

– details of Insert and DeleteMin

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Overview

• B-trees
– node arrangement (internal vs leaf)

– details of insert and remove

– good for very large, disk-based trees

• Selection
– naive selection (scan), quickselect

– median is hardest to do
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Overview

• Sorting
– Insertion sort

– Selection sort

– Shellsort – a modification of insertion sort

– Heapsort

– Mergesort – divide-and-conquer

– Quicksort – divide-and-conquer
• fast because partition is in-place and very simple/efficient

• issues surrounding pivot selection

– Bucket sort, Radix sort

– concept of a “stable sort”

• Recurrence relations
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Overview

• Disjoint Set (Union/Find)
– union-by-xxx

– path compression

• Graphs
– adjacency matrix vs. adjacency list

– terms for types of connectivity

– Topological Sort

– BFS, DFS

– Dijkstra (weighted shortest path) – a greedy algorithm

– Prim/Kruskal (minimum spanning tree) – greedy

– Hamiltonian circuit problem – NP completeness
• Exhaustive search

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Overview

• NP-completeness (brief intro)
– all NPC problems are basically equivalent

– familiarity with these will help you realize if/when you’ve run into 
a hard problem

• Amortization (brief intro)
– how to use a potential function (if you have one) to compute 

amortized budgets in general

– how to amortize the binomial queue operations, specifically

• Algorithmic Techniques
– Huffman coding – greedy algorithm

– Closest point – divide-and-conquer
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B-trees

• Let’s grow a b-tree one step at a time
– M=3, so leaves hold 2-3 values, internal nodes have 2-3 children
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B-tree Insertion

• A node overflows:
– Create new leaf node

• Divide values evenly (10,11 and 31,35)

– Tell parent, “You now have 2 children”
• Parent also needs to know the new minima: 10 and 31

• Parent accepts new child:
– If room, reshuffle pointers and add child

• Minima in first example are 10, 31, 64

– If parent is full, split into two
• Divide the M+1 children evenly

• Tell its parent, “you now have 2 children”

• If there’s no parent, create new root
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B-tree Removal

• Remove item from leaf:
– If leaf underflows, tell parent

• Parent handles small child:
– Try to borrow from child’s siblings
– Else, delete child and distribute 

items to child’s siblings

• In example:
– Can’t borrow from [29,30]

• So remove [31] and add to sibling

– Intermediate has only 1 child
• Neither sib can lend a child
• So remove intermediate, and give 

its child to a sibling
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