
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Final Review

Pete Morcos

University of Washington

5/31/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

Overview

• Basic math
– logs, exponents, summations
– inductive proofs

• Asymptotic analysis
– big-oh, big-theta, big-omega
– the nightmare of exponential algorithms
– costs of time and space

• Lists, Stacks, Queues
– details like header nodes, circular or double linking
– array or pointer implementations

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Overview

• Trees
– terms, height tends to be logarithmic (if balanced)

• Binary Search Trees
– how to Find, Insert; bad worst case behavior

• All operations might cost O(N)

– AVL trees for maintaining balance
• No operation costs more than O(log N)

– Splay trees for good amortized performance
• One operation might be O(N), but overall they average to 

O(log N)

– Idea of “rotation” to rearrange the tree
– Lazy deletion

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

Overview

• Hash tables
– Collision strategies: chaining, probing

– Trade space to gain time

• Heaps (Priority Queues)
– Array implementation

– BuildHeap can be done in O(N)

• Binomial Queues
– Merge operation is fast

– details of Insert and DeleteMin

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Overview

• B-trees
– node arrangement (internal vs leaf)

– details of insert and remove

– good for very large, disk-based trees

• Selection
– naive selection (scan), quickselect

– median is hardest to do

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Overview

• Sorting
– Insertion sort

– Selection sort

– Shellsort – a modification of insertion sort

– Heapsort

– Mergesort – divide-and-conquer

– Quicksort – divide-and-conquer
• fast because partition is in-place and very simple/efficient

• issues surrounding pivot selection

– Bucket sort, Radix sort

– concept of a “stable sort”

• Recurrence relations



2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Overview

• Disjoint Set (Union/Find)
– union-by-xxx

– path compression

• Graphs
– adjacency matrix vs. adjacency list

– terms for types of connectivity

– Topological Sort

– BFS, DFS

– Dijkstra (weighted shortest path) – a greedy algorithm

– Prim/Kruskal (minimum spanning tree) – greedy

– Hamiltonian circuit problem – NP completeness
• Exhaustive search

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Overview

• NP-completeness (brief intro)
– all NPC problems are basically equivalent

– familiarity with these will help you realize if/when you’ve run into 
a hard problem

• Amortization (brief intro)
– how to use a potential function (if you have one) to compute 

amortized budgets in general

– how to amortize the binomial queue operations, specifically

• Algorithmic Techniques
– Huffman coding – greedy algorithm

– Closest point – divide-and-conquer

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

B-trees

• Let’s grow a b-tree one step at a time
– M=3, so leaves hold 2-3 values, internal nodes have 2-3 children

64

31,35

64,71

35 31,35 31,35,64 64

10,31,35

64,71

31 64

10,11

31,35

64,71

31 64

10,11

31,35,36

64,71

31

10,11

31,35

64

36,37

64,71

36

31 64 71 10 11 36

37

31

10,11,12

31,35

64

36,37

64,71,72

3612,72

12 30

10,11

12,13

64 72

36,37

64,71

3613,30,73

30,31,35

72,73

12

10,11

12,13

64 72

36,37

64,71

29 36

72,73

29

31

29,30

31,35

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

B-tree Insertion

• A node overflows:
– Create new leaf node

• Divide values evenly (10,11 and 31,35)

– Tell parent, “You now have 2 children”
• Parent also needs to know the new minima: 10 and 31

• Parent accepts new child:
– If room, reshuffle pointers and add child

• Minima in first example are 10, 31, 64

– If parent is full, split into two
• Divide the M+1 children evenly

• Tell its parent, “you now have 2 children”

• If there’s no parent, create new root

64

10,31,35

64,71

31 64

10,11

31,35

64,71

11

31 64

10,11

31,35,36

64,71

31

10,11

31,35

64

36,37

64,71

36

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

B-tree Removal

• Remove item from leaf:
– If leaf underflows, tell parent

• Parent handles small child:
– Try to borrow from child’s siblings
– Else, delete child and distribute 

items to child’s siblings

• In example:
– Can’t borrow from [29,30]

• So remove [31] and add to sibling

– Intermediate has only 1 child
• Neither sib can lend a child
• So remove intermediate, and give 

its child to a sibling

12

10,11

12,13

64

36,37

64,71

29 36

31

29,30

31,35

12

10,11

12,13

64

36,37

64,71

29 36

29,30,31

12 29

10,11

12,13

64

36,37

64,71

36

29,30,31


