# CSE 373: Final Review

#### Pete Morcos University of Washington 5/31/00

# Overview

- \_\_\_\_\_ \*\*\*\* · Basic math
  - logs, exponents, summations
  - inductive proofs
- · Asymptotic analysis
  - big-oh, big-theta, big-omega - the nightmare of exponential algorithms

  - costs of time and space
- · Lists, Stacks, Queues
- details like header nodes, circular or double linking

2

- array or pointer implementations

CSE 373: Data Structures and Algorithms Pete Morcos UW, Spring 2000

#### Overview

- • Trees
  - terms, height tends to be logarithmic (if balanced)
- · Binary Search Trees
  - how to Find, Insert; bad worst case behavior
    - All operations might cost O(N)
  - AVL trees for maintaining balance
    - · No operation costs more than O(log N)
  - Splay trees for good amortized performance
    - One operation might be O(N), but overall they average to O(log N)
  - Idea of "rotation" to rearrange the tree
- Lazy deletion CSE 373: Data Structures and Algorithms

#### Overview

- · Hash tables
  - Collision strategies: chaining, probing
  - Trade space to gain time
- Heaps (Priority Queues)
- Array implementation
- BuildHeap can be done in O(N)
- Binomial Queues
  - Merge operation is fast
  - details of Insert and DeleteMin

CSE 373: Data Structures and Algorithms Pete Morros UW, Spring 2000

## Overview

- B-trees
  - node arrangement (internal vs leaf)
  - details of insert and remove
  - good for very large, disk-based trees
- Selection
  - naive selection (scan), quickselect
  - median is hardest to do

UW, Spring 2000

CSE 373: Data Structures and Algorithms Pete Morcos

5

## Overview

- · Sorting - Insertion sort
  - Selection sort
  - Shellsort a modification of insertion sort
  - Heapsort

  - Mergesort divide-and-conquer
  - Quicksort divide-and-conquer
    - fast because partition is in-place and very simple/efficient
  - · issues surrounding pivot selection - Bucket sort, Radix sort

  - concept of a "stable sort"
- · Recurrence relations

CSE 373: Data Structures and Algorith Pete Morcos UW, Spring 2000

## Overview

• Disjoint Set (Union/Find)

- union-by-xxx
- union-by-xxx
   path compression
- path compressio

Graphs

- adjacency matrix vs. adjacency list
- terms for types of connectivity
- Topological Sort
- BFS, DFS
- Dijkstra (weighted shortest path) a greedy algorithm
- Prim/Kruskal (minimum spanning tree) greedy
- Hamiltonian circuit problem NP completeness
- Exhaustive search

UW, Spring 2000 CSE 373: Data Structures and Algorithms Pete Morcos

## Overview

- NP-completeness (brief intro)
- all NPC problems are basically equivalent
- familiarity with these will help you realize if/when you've run into a hard problem
- Amortization (brief intro)
  - how to use a potential function (if you have one) to compute
  - amortized budgets in general - how to amortize the binomial queue operations, specifically
  - now to anothize the binomial queue operations, sj
- Algorithmic Techniques
  - Huffman coding greedy algorithm
    Closest point divide-and-conquer

UW, Spring 2000 CSE 373: Data Structures and Algorithms Peter Morcos

**B**-trees



#### **B-tree Insertion**

- A node overflows:
- Create new leaf node
  - Divide values evenly (10,11 and 31,35)
  - Tell parent, "You now have 2 children"
    - · Parent also needs to know the new minima: 10 and 31
- Parent accepts new child:
  - If room, reshuffle pointers and add child
     Minima in first example are 10, 31, 64
  - If parent is full, split into twoDivide the M+1 children evenly
- Tell *its* parent, "you now have 2 children"If there's no parent, create new root
- UW, Spring 2000 CSE 373: Data Structures and Algorithm Pete Morcos



### **B-tree Removal**

