

Page 3 of 8

Name (Last, First): ____________________________________

Student Number:___________________________

University of Washington

CSE 373, Data Structures and Algorithms, Autumn 2001

Donald Chinn

November 9, 2001

MIDTERM

· This test is CLOSED book and CLOSED notes.

· The blank space left for your answers is proportional to the length of a correct answer. If you need more space for your answer, use the back of the previous page and indicate that you did so.

· The questions’ weights give you an indication of how much time you are expected to spend on each of them.

· Think carefully before writing down your answers. Use the back of the pages as scratch paper if you need it. Don’t spend too much time on any one question. Some questions may be harder for you than other questions.

· This exam has 8 pages.

	1
	/16

	2
	/14

	3
	/6

	4
	/6

	5
	/8

	Total
	/50

1. (16 points, 2 points each) True/False. Circle True or False below. You do not need to justify your answers.

	a.
	If Algorithm A runs in time O(n2) time on inputs of size n and Algorithm B runs in time O(n3) time on inputs of size n, then there exists an n0 such that algorithm A runs in less time than Algorithm B on all inputs of size n > n0.

	True False

	b.
	If an algorithm consists of two steps, the first of which takes O(n) time and the second of which takes O(n log n) time, then the entire algorithm runs in O(n log n) time.

	True False

	c.
	If we do a find operation on an n-node splay tree that happens to have the AVL tree property, then that find operation will take O(log n) time.

	True False

	d.
	It is possible to exchange (swap) the positions of any two adjacent nodes in a singly linked list, given pointers to the two nodes, in O(1) time.
	True False

	e.
	Even given an optimal algorithm, it might take as much as ((n) time to exchange (swap) the positions of any two nodes in a doubly linked list, given pointers to the two nodes.

	True False

	f.
	The height of an n-node tree can be computed using a postorder traversal in O(log n) time.
	True False

	g.
	Doing an insert operation on an n-node splay tree might require the insert algorithm to do as many as n (single) rotations.

	True False

	h.
	In all of the binary search trees we have seen so far (BST, AVL, splay), the time it takes to perform a find on a key that is in the tree is O(d), where d is the depth of the node that contains that key.
	True False

2.a. (2 points) Fill in the blanks in the following text to make the statements true.

If we are given n integers, they can be printed out in sorted order using a splay tree as follows: insert the n items (one at a time) into the splay tree, and then perform a/an ________________ traversal of the tree, printing out the integer at each node visited. The total time to do the insertions and the traversal is ________________ .

b. (2 points) Fill in the blanks in the following text to make the statement true.

In a B-tree of order M, each non-leaf node (except the root) has at least ________________ children and at most ________________ children.

c. (2 points) List two features of the RAM model that are not features of real computers.

d. (2 points) Give one reason why you might want to implement a dictionary ADT as a binary search tree instead of a hash table.

2e. (1 point) Give an advantage double hashing has over linear probing for collision resolution in open addressing.

f. (1 point) Give a disadvantage.

g. (2 points) Suppose we have two sorted lists of integers, A and B, implemented as linked lists. How long would an optimal algorithm take to produce a new linked list consisting of elements in both A and B. (Be sure you define any variables you use in your answer.)

h. (2 points) Suppose you want to implement a Polynomial ADT using linked lists as the implementation. You want to support the +, -, *, and Print operations. Give a reason for implementing the linked list so the terms are sorted in decreasing order of exponents (versus having the terms in ascending order or in no order).

3. (6 points, 3 points each)

Consider the following binary search tree.

a. If we view the tree as a binary search tree, draw below what the tree would look like after deleting the key 21.

3.b. Consider the following AVL tree.

Draw the AVL tree after inserting the key 13.

4. (6 points total) Consider the following code for binary search trees (which has a poor choice of function name and integer parameter).

class BinaryNode

{

 int element;

 BinaryNode *left;

 BinaryNode *right;

 friend class BST;

}

int BST::MysteryFunction (BinaryNode * t, int x)

{

 // This code could really use some good comments.

 if (t == NULL)

 {

 return 0;

 }

 else if (x < t->element)

 {

 return MysteryFunction(t->left, x);

 }

 else

 {

 return (1 + MysteryFunction(t->left, x)

 + MysteryFunction(t->right, x));

 }

}

a. (4 points) If t is the root of a binary search tree and x is some integer, what does MysteryFunction(t, x) return?

b. (2 points) If t is the root of an n-node binary search tree, how long will MysteryFunction(t, x) take before it returns?

5. (8 points) Gill Bates is president and CEO of Minisquish Corporation, which is based in the Puget Sound. In a recent press conference, Bates announced the release of a new piece of software called WinBible 2001. The idea is that people can quickly look up words that are in the King James Bible.
Bates said that at the heart of the software is a dictionary of the words in the Bible. Before the release of WinBible 2001, the standard way to organize the dictionary was to have a single hash table of size 28,000 (with separate chaining for collision resolution) to hold the 14,000 different words in the Bible.

Bates said that his method of implementing the dictionary uses two hash tables. The first hash table holds the most frequent 1000 words in the Bible, and is of size 2000. The hash function for the first table has the nice property that the 1000 words hash to different spots in the table.

The second hash table contains the other 13,000 words in a hash table of size 26,000 (with separate chaining for collision resolution). Bates's find algorithm is to look in the first hash table to see if the word being looked up is there, and then if it isn't, look in the second hash table.

Bates claims that this innovation will significantly speed up searches, assuming that 80% of the word lookups are for the 1000 most frequently occurring ones, and that 20% are for the other 13,000.

Is WinBible an innovation, as Bates claims, or should Bates be sued by the Federal government for fraudulent advertisement? Justify your answer by comparing the average number of items that need to be examined in the standard dictionary and in Bates's dictionary. Recall that a successful search on a hash table with separate chaining takes 1 + ((/2) probes on average and an unsuccessful search takes (probes on average.

21

40

12

6

15

28

53

65

12

20

14

30

15

9

4

6

23

32

14

