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CSE 373 Lecture 11: Binomial Queues

✦ Today’s Topics:
➭ Binomial Queues

➧ Merge
➧ Insert
➧ DeleteMin
➧ Implementation

➭ Other Priority Queues: d-heaps, leftist, and skew heaps

✦ Covered in Chapter 6 in the text
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Binomial Queues

✦ Binomial queues support all three priority queue operations
Merge, Insert and DeleteMin in O(log N) time

✦ Idea: Maintain a collection of heap-ordered trees
➭ Forest of binomial trees

✦ Recursive Definition of Binomial Tree (based on height k):
➭ Only one binomial tree for a given height
➭ Binomial tree of height 0 = single root node
➭ Binomial tree of height k = Bk = Attach Bk-1 to root of

another Bk-1
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3 Steps to Building a Binomial Tree

✦ To construct a binomial tree Bk of height k:
1. Take the binomial tree Bk-1 of height k-1
2. Place another copy of Bk-1 one level below the first
3. Attach the root nodes

B0

B1 B2

✦ Binomial tree of height k has exactly 2k nodes (by
induction)
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Definition of Binomial Queues
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Binomial Queue = “forest” of heap-ordered binomial trees
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Binomial queue H1
5 elements = 101 base 2
! B2 B0

Binomial queue H2
11 elements = 1011 base 2
! B3 B1 B0
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Binomial Queue Properties

✦ Suppose you are given a binomial queue of N nodes

1. There is a unique set of binomial trees for N nodes

2. What is the maximum number of trees that can be in an N-
node queue?
➭ 1 node ! 1 tree B0; 2 nodes ! 1 tree B1; 3 nodes ! 2

trees B0 and B1; 7 nodes ! 3 trees B0, B1 and B2 …
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Number of Trees in a Binomial Queue

✦ What is the maximum number of trees that can be in an N-
node binomial queue?
➭ 1 node ! 1 tree B0; 2 nodes ! 1 tree B1; 3 nodes ! 2

trees B0 and B1; 7 nodes ! 3 trees B0, B1 and B2 …

✦ Trees B0, B1, …, Bk can store up to 20 + 21 + … + 2k =
2k+1 – 1 nodes = N.

✦ Maximum is when all trees are used.

✦ So, number of trees in an N-node binomial queue is ≤
(log(N+1)-1)+1= O(log N)
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Binomial Queues: Merge

✦ Main Idea: Merge two binomial queues by merging
individual binomial trees
➭ Since Bk+1 is just two Bk’s attached together, merging trees is easy

✦ Steps for creating new queue by merging:
1. Start with Bk for smallest k in either queue.
2. If only one Bk, add Bk to new queue and go to next k.
3. Merge two Bk’s to get new Bk+1 by making larger root the

child of smaller root. Go to step 2 with k = k + 1.
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Binomial Queues: Merge Example

✦ Merge H1 and H2
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Binomial Queues: Merge and Insert

✦ What is the run time for Merge of two O(N) queues?

✦ How would you insert a new item into the queue?
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Binomial Queues: Merge and Insert

✦ What is the run time for Merge of two O(N) queues?
➭ O(number of trees) = O(log N)

✦ How would you insert a new item into the queue?
➭ Create a single node queue B0 with new item and merge with

existing queue
➭ Again, O(log N) time

✦ On-board example: Insert 1, 2, 3, …,7 into an empty
binomial queue
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Binomial Queues: DeleteMin

✦ Steps:
1. Find tree Bk with the smallest root
2. Remove Bk from the queue
3. Delete root of Bk (return this value); You now have a second

queue made up of the forest B0, B1, …, Bk-1
4. Merge this queue with remainder of the original (from step 2)

✦ Example: Insert 1, 2, …, 7 into empty queue and DeleteMin

✦ Run time analysis: Steps 1 through 4 = how much time for
an N-node queue?
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Binomial Queues: DeleteMin

✦ Steps:
1. Find tree Bk with the smallest root
2. Remove Bk from the queue
3. Delete root of Bk (return this value); You now have a new

queue made up of the forest B0, B1, …, Bk-1
4. Merge this queue with remainder of the original (from step 2)

✦ Example: Insert 1, 2, …, 7 into empty queue and DeleteMin

✦ Run time analysis: Step 1 is O(log N), step 2 and 3 are
O(1), and step 4 is O(log N). Total time = O(log N)
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Implementation of Binomial Queues

✦ DeleteMin requires fast access to all subtrees of root
➭ Need pointer-based implementation
➭ Use First-Child/Next-Sibling representation of trees

✦ Merge adds one binomial tree as child to another
➭ This added tree will now be the largest subtree

✦ Question: Should we order subtrees in increasing or
decreasing size?
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Implementation of Binomial Queues

✦ DeleteMin requires fast access to all subtrees of root
➭ Need pointer-based implementation
➭ Use First-Child/Next-Sibling representation of trees
➭ Use array of pointers to root nodes of binomial trees

✦ Merge adds one binomial tree as child to another
➭ This added tree will now be the largest subtree

✦ Question: Should we order subtrees in increasing or
decreasing size?
➭ Order in terms of decreasing subtree size
➭ Avoids traversal of linked list of next sibling pointers

✦ What does our queue containing 1, 2, …, 7 look like?
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Other Priority Queues: d-Heaps

✦ Similar to a binary heap, except we allow more than 2
children per node

✦ d-heap has d children per node

✦ Example: 3-heap – root is A[1]; children of node A[i] are at
what locations?
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Other Priority Queues: d-Heaps

✦ Similar to a binary heap, except we allow more than 2
children per node

✦ d-heap has d children per node

✦ Example: 3-heap – root is A[1] and children of node A[i] are
A[3i-1], A[3i], A[3i+1]

✦ Just as in B-tree, more children means
shallower heap
➭ Depth is O(logd N) instead of O(log2 N)
➭ But, d-1 comparisons to find smallest child
➭ Tradeoff between depth and “breadth”
➭ Optimal d value is application dependent
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