
1R. Rao, CSE 373

CSE 373 Lecture 15: Sorting

✦ Today’s Topics:
➭ Elementary Sorting Algorithms:

➧ Bubble Sort
➧ Selection Sort
➧ Insertion Sort

➭ Shellsort

✦ Covered in Chapter 7 of the textbook

2R. Rao, CSE 373

Sorting: Definitions

✦ Input: You are given an array A of data records, each with a key
(which could be an integer, character, string, etc.).
➭ There is an ordering on the set of possible keys
➭ You can compare any two keys using <, >, ==

✦ For simplicity, we will assume that A[i] contains only one
element – the key

✦ Sorting Problem: Given an array A, output A such that:
For any i and j, if i < j then A[i] ≤ A[j]

✦ Internal sorting ! all data in memory, External ! data on disk

3R. Rao, CSE 373

Why Sort?

✦ Sorting algorithms are among the most frequently used
algorithms in computer science
➭ Crucial for efficient retrieval and processing of large volumes of data

E.g. Database systems

✦ Allows binary search of an N-element array in O(log N) time

✦ Allows O(1) time access to kth largest element in the array
for any k

✦ Allows easy detection of any duplicates

4R. Rao, CSE 373

Sorting: Things to Think about…

✦ Space: Does the sorting algorithm require extra memory to
sort the collection of items?
➭ Do you need to copy and temporarily store some subset of the

keys/data records?
➭ An algorithm which requires O(1) extra space is known as an in

place sorting algorithm

✦ Stability: Does it rearrange the order of input data records
which have the same key value (duplicates)?
➭ E.g. Phone book sorted by name. Now sort by county – is the list still

sorted by name within each county?
➭ Extremely important property for databases
➭ A stable sorting algorithm is one which does not rearrange the

order of duplicate keys

5R. Rao, CSE 373

Sorting 101: Bubble Sort

✦ Idea: “Bubble” larger elements to end of array by comparing
elements i and i+1, and swapping if A[i] > A[i+1]
➭ Repeat from first to end of unsorted part

✦ Example: Sort the following input sequence:
➭ 21, 33, 7, 25

6R. Rao, CSE 373

Sorting 101: Bubblesort

/* Bubble sort for integers */
#define SWAP(a,b) { int t; t=a; a=b; b=t; }

void bubble(int A[], int n) {

int i, j;

for(i=0;i<n;i++) { /* n passes thru the array */

/* From start to the end of unsorted part */

for(j=1;j<(n-i);j++) {
/* If adjacent items out of order, swap */

if(A[j-1] > A[j]) SWAP(A[j-1],A[j]); }

}

}

✦ Stable? In place? Running time = ?

7R. Rao, CSE 373

Sorting 102: Selection Sort

✦ Bubblesort is stable and in place, but O(N2) – can we do
better by moving items more than 1 slot per step?

✦ Idea: Scan array and select smallest key, swap with A[1];
scan remaining keys, select smallest and swap with A[2];
repeat until last element is reached.

✦ Example: Sort the following input sequence:
➭ 21, 33, 7, 25

✦ Is selection sort stable (suppose you had another 33 instead
of 7)? In place?

✦ Running time = ?

8R. Rao, CSE 373

Sorting 102: Selection Sort

✦ Bubblesort is O(N2) – can we do better by moving items
more than 1 slot per step?

✦ Idea: Scan array and select smallest key, swap with A[1];
scan remaining keys, select smallest and swap with A[2];
repeat until last element is reached.

✦ Example: Sort the following input sequence:
➭ 21, 33, 7, 25

✦ NOT STABLE. In place (extra space = 1 temp variable).

✦ Running time = N steps with N-1, …, 1 comparisons
= N-1 + … + 1 = O(N2)

9R. Rao, CSE 373

Sorting 103: Insertion Sort

✦ What if first k elements of array are already sorted?
➭ E.g. 4, 7, 12, 5, 19, 16

✦ Idea: Can insert next element into proper position and get
k+1 sorted elements, insert next and get k+2 sorted etc.
➭ 4, 5, 7, 12, 19, 16
➭ 4, 5, 7, 12, 19, 16
➭ 4, 5, 7, 12, 16, 19 Done!
➭ Overall, N-1 passes needed
➭ Similar to card sorting…
➭ Start with empty hand
➭ Keep inserting…

�

A

�

K

�

10
�

2

10R. Rao, CSE 373

Sorting 103: Insertion Sort

void InsertionSort(ElementType A[], int N) {
int j, P; ElementType Tmp;

for(P = 1; P < N; P++) {
Tmp = A[P];
for(j = P; j > 0 && A[j - 1] > Tmp;j--)

A[j] = A[j - 1];
A[j] = Tmp;

}
}

✦ Is Insertion sort in place? Stable?
✦ Running time = ?

11R. Rao, CSE 373

Sorting 103: Insertion Sort

void InsertionSort(ElementType A[], int N) {
int j, P; ElementType Tmp;

for(P = 1; P < N; P++) {
Tmp = A[P];
for(j = P; j > 0 && A[j - 1] > Tmp;j--)

A[j] = A[j - 1];
A[j] = Tmp;

}
}

✦ Insertion sort ! in place (O(1) space for Tmp) and stable
✦ Running time: Worst case ! reverse order input = Θ(N2)

➭ Best case ! input already sorted = O(N).

12R. Rao, CSE 373

Lower Bound on Simple Sorting Algorithms

✦ An inversion is a pair of elements in wrong order
➭ i < j but A[i] > A[j]

✦ Our simple sorting algorithms so far swap adjacent elements
(explicitly or implicitly) ! removes 1 inversion
➭ Their running time is proportional to number of inversions in array

✦ Given N distinct keys, total of N(N-1)/2 possible inversions.
Average list will contain half this number of inversions
= N(N-1)/4
➭ Average running time of Insertion sort is Θ(N2)

✦ Any sorting algorithm that swaps adjacent elements requires
Ω(N2) time ! each swap removes only one inversion

13R. Rao, CSE 373

Shellsort: Breaking the Quadratic Barrier

✦ Named after Donald Shell – first algorithm to achieve o(N2)
➭ Running time is O(Nx) where x = 3/2, 5/4, 4/3, …, or 2 depending on

“increment sequence”

✦ Idea: Use an increment sequence h1 < h2 < … < ht
➭ Start with k = t
➭ Sort all subsequences of elements that are hk apart so that

A[i] ≤ A[i+hk] for all i ! known as an hk-sort
➭ Go to next smaller increment hk-1 and repeat until k = 1

✦ Example: Shell’s original sequence: ht = N/2 and hk = hk+1/2
➭ Sort 21, 33, 7, 25
➭ Try it! (What is the increment sequence?)

14R. Rao, CSE 373

Shellsort: Breaking the Quadratic Barrier

✦ Named after Donald Shell – first algorithm to achieve o(N2)
➭ Running time is O(Nx) where x = 3/2, 5/4, 4/3, …, or 2 depending on

“increment sequence”

✦ Idea: Use an increment sequence h1 < h2 < … < ht
➭ Start with k = t
➭ Sort all subsequences of elements that are hk apart so that

A[i] ≤ A[i+hk] for all i ! known as an hk-sort
➭ Go to next smaller increment hk-1 and repeat until k = 1

✦ Example: Shell’s original sequence: ht = N/2 and hk = hk+1/2
➭ Sort 21, 33, 7, 25 (N = 4, increment sequence = 2, 1)
➭ 7, 25, 21, 33 (after 2-sort)
➭ 7, 21, 25, 33 (after 1-sort)

15R. Rao, CSE 373

Shellsort

void Shellsort(ElementType A[], int N){
int i, j, Increment; ElementType Tmp;
for(Increment = N/2; Increment > 0; Increment /= 2)
for(i = Increment; i < N; i++) {

Tmp = A[i];
for(j = i; j >= Increment; j -= Increment)

if(Tmp < A[j - Increment])
A[j] = A[j - Increment];

else
break;

A[j] = Tmp;
}

}

✦ Running time = ? (What is the worst case?)

16R. Rao, CSE 373

Answer and further analysis in next class…

Also in the next class, the crème de la crème:

Heapsort, Mergesort, and Quicksort

To Do:

If you can’t wait, read chapter 7

If you can, read chapter 7 anyway…

