CSE 373 Lecture 15: Sorting

- Today's Topics:
\Rightarrow Elementary Sorting Algorithms:
- Bubble Sort
- Selection Sort
- Insertion Sort
\Rightarrow Shellsort
\star Covered in Chapter 7 of the textbook
R. Rao, CSE 373

Sorting: Definitions

- Input: You are given an array A of data records, each with a key (which could be an integer, character, string, etc.).
\Rightarrow There is an ordering on the set of possible keys
\Rightarrow You can compare any two keys using <, >, ==
- For simplicity, we will assume that $\mathrm{A}[\mathrm{i}]$ contains only one element - the key
\uparrow Sorting Problem: Given an array A, output A such that: For any i and j, if i < j then $\mathrm{A}[\mathrm{i}] \leq \mathrm{A}[\mathrm{j}]$
- Internal sorting \rightarrow all data in memory, External \rightarrow data on disk

Why Sort?

- Sorting algorithms are among the most frequently used algorithms in computer science
\Rightarrow Crucial for efficient retrieval and processing of large volumes of data E.g. Database systems
- Allows binary search of an N -element array in $\mathrm{O}(\log \mathrm{N})$ time
- Allows $\mathrm{O}(1)$ time access to k th largest element in the array for any k
- Allows easy detection of any duplicates

Sorting: Things to Think about...

- Space: Does the sorting algorithm require extra memory to sort the collection of items?
\Rightarrow Do you need to copy and temporarily store some subset of the keys/data records?
\Rightarrow An algorithm which requires $\mathrm{O}(1)$ extra space is known as an in place sorting algorithm
- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
\Rightarrow E.g. Phone book sorted by name. Now sort by county - is the list still sorted by name within each county?
\Rightarrow Extremely important property for databases
\Rightarrow A stable sorting algorithm is one which does not rearrange the order of duplicate keys

Sorting 101: Bubble Sort

- Idea: "Bubble" larger elements to end of array by comparing elements i and $\mathrm{i}+1$, and swapping if $\mathrm{A}[\mathrm{i}]>\mathrm{A}[\mathrm{i}+1]$ \Rightarrow Repeat from first to end of unsorted part
- Example: Sort the following input sequence: $\Rightarrow 21,33,7,25$

Sorting 101: Bubblesort
/* Bubble sort for integers */
\#define $\operatorname{SWAP}(a, b) \quad\{$ int $t ; t=a ; a=b ; b=t ;$ \}
void bubble(int A[], int n) \{
int i, j;
for(i=0;i<n;i++) \{ /* n passes thru the array */
/* From start to the end of unsorted part */ for ($j=1 ; j<(n-i) ; j++$) \{
/* If adjacent items out of order, swap */
if (A[j-1] > A[j]) SWAP(A[j-1],A[j]); \}
$\}$
\}
\star Stable? In place? Running time = ?

Sorting 102: Selection Sort

\uparrow Bubblesort is $\mathrm{O}\left(\mathrm{N}^{2}\right)$ - can we do better by moving items more than 1 slot per step?

- Idea: Scan array and select smallest key, swap with A[1]; scan remaining keys, select smallest and swap with $\mathrm{A}[2]$; repeat until last element is reached.
- Example: Sort the following input sequence: $\Rightarrow 21,33,7,25$
- NOT STABLE. In place (extra space $=1$ temp variable).
\downarrow Running time $=\mathrm{N}$ steps with $\mathrm{N}-1, \ldots, 1$ comparisons $=\mathrm{N}-1+\ldots+1=\mathrm{O}\left(\mathrm{N}^{2}\right)$

Sorting 103: Insertion Sort

- What if first k elements of array are already sorted? \Rightarrow E.g. 4, 7, 12, 5, 19, 16
- Idea: Can insert next element into proper position and get $\mathrm{k}+1$ sorted elements, insert next and get $\mathrm{k}+2$ sorted etc.
$\Rightarrow 4,5,7,12,19,16$
$\Rightarrow 4,5,7,12,19,16$
$\Rightarrow 4,5,7,12,16,19$ Done!
\Rightarrow Overall, N-1 passes needed
\Rightarrow Similar to card sorting...
\Rightarrow Start with empty hand
\Rightarrow Keep inserting..

R. Rao, CSE 373

Sorting 103: Insertion Sort

```
void InsertionSort( ElementType A[ ], int N ) {
    int j, P; ElementType Tmp
    for( P = 1; P < N; P++ ) {
            Tmp = A[ P ];
            for( j = P; j > 0 && A[ j - 1 ] > Tmp;j-- )
                A[ j ] = A[ j - 1 ];
            A[ j ] = Tmp;
    }
}
 Is Insertion sort in place? Stable?
Running time = ?

\section*{Sorting 103: Insertion Sort}
```

void InsertionSort(ElementType A[], int N) {
int j, P; ElementType Tmp;
for(P = 1; P < N; P++) {
Tmp = A[P];
for(j = P; j > 0 \&\&\& A[j - 1] > Tmp;j--)
A[j] = A[j - 1];
A[j] = Tmp;
}
}
| Insertion sort }->\mathrm{ in place (O(1) space for Tmp) and stable
Running time: Worst case }->\mathrm{ reverse order input = O(N}\mp@subsup{}{}{2}
Best case }->\mathrm{ input already sorted = O(N).

Lower Bound on Simple Sorting Algorithms

- An inversion is a pair of elements in wrong order $\Rightarrow \mathrm{i}<\mathrm{j}$ but $\mathrm{A}[\mathrm{i}]>\mathrm{A}[\mathrm{j}]$
- Our simple sorting algorithms so far swap adjacent elements (explicitly or implicitly) \rightarrow removes 1 inversion
\Leftrightarrow Their running time is proportional to number of inversions in array
\uparrow Given N distinct keys, total of $\mathrm{N}(\mathrm{N}-1) / 2$ possible inversions. Average list will contain half this number of inversions $=\mathrm{N}(\mathrm{N}-1) / 4$
\Rightarrow Average running time of Insertion sort is $\Theta\left(\mathrm{N}^{2}\right)$
- Any sorting algorithm that swaps adjacent elements requires $\Omega\left(\mathrm{N}^{2}\right)$ time \rightarrow each swap removes only one inversion

Shellsort: Breaking the Quadratic Barrier

- Named after Donald Shell - first algorithm to achieve o(N^{2}) \Rightarrow Running time is $\mathrm{O}\left(\mathrm{N}^{x}\right)$ where $x=3 / 2,5 / 4,4 / 3, \ldots$, or 2 depending on "increment sequence"
\bullet Idea: Use an increment sequence $\mathrm{h}_{1}<\mathrm{h}_{2}<\ldots<\mathrm{h}_{\mathrm{t}}$
\Rightarrow Start with $\mathrm{k}=\mathrm{t}$
\Rightarrow Sort all subsequences of elements that are h_{k} apart so that $\mathrm{A}[\mathrm{i}] \leq \mathrm{A}\left[\mathrm{i}+\mathrm{h}_{\mathrm{k}}\right]$ for all $\mathrm{i} \rightarrow$ known as an h_{k}-sort
\Rightarrow Go to next smaller increment $\mathrm{h}_{\mathrm{k}-1}$ and repeat until $\mathrm{k}=1$
\rightarrow Example: Shell's original sequence: $h_{t}=N / 2$ and $h_{k}=h_{k+1} / 2$ \Rightarrow Sort 21, 33, 7, 25
\Rightarrow Try it! (What is the increment sequence?)

Shellsort: Breaking the Quadratic Barrier

- Named after Donald Shell - first algorithm to achieve o(N^{2}) \Rightarrow Running time is $\mathrm{O}\left(\mathrm{N}^{x}\right)$ where $x=3 / 2,5 / 4,4 / 3, \ldots$, or 2 depending on "increment sequence"
- Idea: Use an increment sequence $\mathrm{h}_{1}<\mathrm{h}_{2}<\ldots<\mathrm{h}_{\mathrm{t}}$
\Rightarrow Start with $\mathrm{k}=\mathrm{t}$
\Rightarrow Sort all subsequences of elements that are h_{k} apart so that $\mathrm{A}[\mathrm{i}] \leq \mathrm{A}\left[\mathrm{i}+\mathrm{h}_{\mathrm{k}}\right]$ for all $\mathrm{i} \rightarrow$ known as an h_{k}-sort
\Rightarrow Go to next smaller increment $\mathrm{h}_{\mathrm{k}-1}$ and repeat until $\mathrm{k}=1$
- Example: Shell's original sequence: $h_{t}=N / 2$ and $h_{k}=h_{k+1} / 2$
\Rightarrow Sort $21,33, \underline{7}, 25 \quad(\mathrm{~N}=4$, increment sequence $=2,1)$
$\Rightarrow \underline{7}, 25, \underline{21}, 33 \quad$ (after 2-sort)
$\Rightarrow \overline{7}, 21, \overline{25}, 33$ (after 1-sort)
R. Rao, CSE 373

Shellsort

```
void Shellsort( ElementType A[ ], int N ){
    int i, j, Increment; ElementType Tmp;
    for( Increment = N/2; Increment > 0; Increment /= 2 )
        for( i = Increment; i < N; i++ ) {
            Tmp = A[ i ];
            Tmp = A[ i ]; \ \= Increment; j -= Increment
                if( Tmp < A[ j - Increment ] )
                    A[ j ] = A[j - Increment ];
                    else
            break;
            A[ j ] = Tmp;
        }
}
```

- Running time $=?($ What is the worst case? $)$

Answer and further analysis in next class...
Also in the next class, the crème de la crème:
Heapsort, Mergesort, and Quicksort

To Do:

If you can't wait, read chapter 7
If you can, read chapter 7 anyway...

