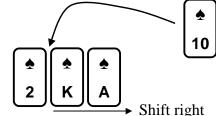
CSE 373 Lecture 16: Sorting Faster and Faster...

- ◆ What's on our plate today?
 - ⇒ Faster sorting Algorithms:
 - **♦** Shellsort
 - ▶ Heapsort
 - ▶ Mergesort
- ◆ Covered in Chapter 7 of the textbook

R. Rao, CSE 373

Recall from Last Time: Insertion Sort

- ◆ Main Idea:
 - \Rightarrow Start with 1st element, insert 2nd if < 1st after shifting 1st element \Rightarrow First 2 are now sorted...
 - \Rightarrow Insert 3rd after shifting 1st and/or 2nd as needed \Rightarrow First 3 sorted...
 - ⇒ Repeat until last element is correctly inserted → All N elements sorted
- ◆ Example: Sort 19, 5, 2, 1
 - \Rightarrow 5, 19, 2, 1 (shifted 19)
 - \Rightarrow 2, 5, 19, 1 (shifted 5, 19)
 - \Rightarrow 1, 2, 5, 19 (shifted 2, 5, 19)



- **♦** Running time:
 - \Rightarrow Worst case \rightarrow reverse order input = $\Theta(N^2)$
 - \Rightarrow Best case \rightarrow input already sorted = O(N)

R. Rao, CSE 373 2

Shellsort: Motivation

- → <u>Main Insight</u>: Insertion sort runs fast on nearly sorted sequences → do several passes of Insertion sort on different subsequences of elements
- **◆** Example: Sort 19, 5, 2, 1
 - 1. Do Insertion sort on subsequences of elements spaced apart by 2: 1^{st} and 3^{rd} , 2^{nd} and 4^{th}
 - $\Rightarrow 19, 5, 2, 1 \rightarrow 2, 1, 19, 5$
 - 2. Do Insertion sort on subsequence of elements spaced apart by 1:
 - \Rightarrow 2, 1, 19, 5 \rightarrow 1, 2, 19, 5 \rightarrow 1, 2, 19, 5 \rightarrow 1, 2, 5, 19
- Note: Fewer number of shifts than plain Insertion sort
 ⇒ 4 versus 6 for this example

R. Rao, CSE 373

3

Shellsort: Overview

- ◆ Named after Donald Shell first algorithm to achieve o(N²)
 - \Rightarrow Running time is O(N^x) where x = 3/2, 5/4, 4/3, ..., or 2 depending on "increment sequence"
- \bullet In our example, we used the increment sequence: N/2, N/4,
 - ..., 1 = 2, 1 (for N = 4 elements)
 - ❖ This is Shell's original increment sequence
- ♦ Shellsort: Pick an *increment sequence* $h_t > h_{t-1} > ... > h_1$
 - \Rightarrow Start with k = t
 - ⇒ Insertion sort all subsequences of elements that are h_k apart so that $A[i] \le A[i+h_k]$ for all $i \to k$ nown as an h_k -sort
 - \Rightarrow Go to next smaller increment h_{k-1} and repeat until k = 1 (note: $h_1 = 1$)

Shellsort: Nuts and Bolts

- Note: The two inner for loops correspond almost exactly to the code for Insertion sort!
- ◆ Running time = ? (What is the worst case?)

R. Rao, CSE 373

5

Shellsort: Analysis

- ◆ Simple to code but hard to analyze → depends on increment sequence
- \bullet What about the increment sequence N/2, N/4, ..., 2, 1?
 - Upper bound
 - Shellsort does h_k insertions sort with N/h_k elements for k = 1 to t
 - ▶ Running time = $O(\sum_{k=1...t} h_k (N/h_k)^2) = O(N^2 \sum_{k=1...t} 1/h_k) = O(N^2)$
 - **⇒** Lower bound
 - ▶ What is the worst case?

R. Rao, CSE 373 6

Shellsort: Analysis

- ♦ What about the increment sequence N/2, N/4, ..., 2, 1?
 - Upper bound
 - Shellsort does h_k insertions sort with N/h_k elements for k = 1 to t
 - Running time = $O(\sum_{k=1...t} h_k (N/h_k)^2) = O(N^2 \sum_{k=1...t} 1/h_k) = O(N^2)$
 - - ▶ What is the worst case?
 - ▶ Smallest elements in odd positions, largest in even positions
 - <u>2</u>, 11, <u>4</u>, 12, <u>6</u>, 13, <u>8</u>, 14
 - ▶ None of the passes N/2, N/4, ..., 2 do anything!
 - ▶ Last pass (h₁ = 1) must shift N/2 smallest elements to first half and N/2 largest elements to second half \rightarrow 4 shifts 1 slot, 6 shifts 2, 8 shifts 3, ... = 1 + 2 + 3 + ... (N/2 terms)

7

▶ at least N^2 steps = $\Omega(N^2)$

R. Rao, CSE 373

Shellsort: Breaking the O(N2) Barrier

- ♦ The reason we got Ω (N²) was because of increment sequence
 - ⇒ Adjacent increments have common factors (e.g. 8, 4, 2, 1)
 - ❖ We keep comparing same elements over and over again
 - ❖ Need to increment so that different elements are in different passes
- \bullet Hibbard's increment sequence: $2^k 1$, $2^{k-1} 1$, ..., 7, 3, 1
 - ❖ Adjacent increments have no common factors
 - ⇒ Worst case running time of Shellsort with Hibbard's increments = $\Theta(N^{1.5})$ (Theorem 7.4 in text)
 - Average case running time for Hibbard's = $O(N^{1.25})$ in simulations but nobody has been able to prove it! (next homework assignment?)
- ◆ Final Thoughts: Insertion sort good for small input sizes
 (~20); Shellsort better for moderately large inputs (~10,000)

Hey...How about using Binary Search Trees?

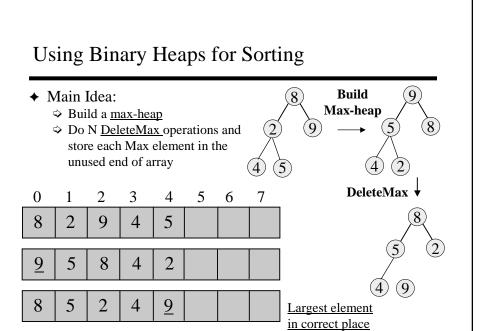
♦ Can we beat $O(N^{1.5})$ using a BST to sort N elements?

R. Rao, CSE 373

(

Using Binary Search Trees for Sorting

- ♦ Can we beat $O(N^{1.5})$ using a BST to sort N elements?
 - ❖ Yes!!
 - ⇒ Insert each element into an initially empty BST
 - ⇒ Do an In-Order traversal to get sorted output
- **♦** Running time: N Inserts, each takes O(log N) time, plus O(N) for In-Order traversal = $O(N log N) = o(N^{1.5})$
- ◆ Drawback Extra Space: Need to allocate space for tree nodes and pointers → O(N) extra space, not in place sorting
- ◆ Waittaminute...what if the tree is complete, and we use an array representation can we sort in place?
 - Recall your favorite data structure with the initials B. H.



11

Heapsort: Analysis

R. Rao, CSE 373

◆ Running time = time to build max-heap + time for N DeleteMax operations = ?

Heapsort: Analysis

- ◆ Running time = time to build max-heap + time for N DeleteMax operations = O(N) + N O(log N) = O(N log N)
- ♦ Can also show that running time is Ω(N log N) for some inputs, so *worst case* is Θ(N log N)
- ◆ Average case running time is also O(N log N) (see text for proof if you are interested)

R. Rao, CSE 373

How about a "Divide and Conquer" strategy?

- ♦ Very important strategy in computer science:
 - 1. Divide problem into smaller parts
 - 2. Independently solve the parts
 - 3. Combine these solutions to get overall solution
- **◆ Idea**: Divide array into two halves, *recursively* sort left and right halves, then *merge* two halves → known as <u>Mergesort</u>
- **♦** Example: Mergesort the input array:

0	1	2	3	4	5	6	7
8	2	9	4	5	3	1	6

Questions to ponder over the Weekend
Is Mergesort an in place sorting algorithm?
What is the running time for Mergesort?
How can I find time to read Chapter 7?
What is the meaning of life? (extra credit)

Have a good weekend!