CSE 373 Lecture 19: Wrap-Up of Sorting

+ What's on our platter today?
< How fast can the fastest sorting algorithm be?
» Lower bound on comparison-based sorting
< Tricksto sort faster than the lower bound
< External versus Internal Sorting
< Practical comparisons of internal sorting algorithms
< Summary of sorting

+ Covered in Chapter 7 of the textbook

R. Rao, CSE 373 1

How fast can we sort?

+ Heapsort, Mergesort, and Quicksort al runin O(N log N)
best case running time

+ Canwe do any better?

+ Can we believe Pat Swe (pronounced “Sway™) from
Swetown (formerly Softwareville), USA, who claimsto have
discovered an O(N log log N) sorting algorithm?

R. Rao, CSE 373 2

The Answer isNo! (if using comparisons only)

+ Recall our basic assumption: we can only compare two
elements at atime — how does this limit the run time?

+ Suppose you are given N elements
= Assume no duplicates — any sorting algorithm must also work for this
case

+ How many possible orderings can you get?
< Example: a, b,c (N=3)

R. Rao, CSE 373 3

The Answer isNo! (if using comparisons only)

+ Recall our basic assumption: we can only compare two
elements at atime — how does this limit the run time?

+ Suppose you are given N elements
< Assume no duplicates — any sorting algorithm must also work for this
case

+ How many possible orderings can you get?
< Example: a,b,c (N=3)
< Orderings. 1.abc 2.bca 3.cab 4.acb 5.bac 6.cbha
< 6 orderings = 3.2.1 = 3!
N choices (N-1) choices 1 choice

+ For N dlements: (r (
= N! orderings

R. Rao, CSE 373 4

A “Decision Tree

a<b<c, b<c<a,
c<a<b, a<c<hb,
b<a<c, c<b<a

a<b<c‘//'51/</b a>b b<c<a
c<a<b b<a<c
a<c<b c<b<a

a<f/\a>c b<‘c/\\5)>c
a<b<c c<a<b b<c<a||c<b<a

a<c<b b<a<c

b</ b>c C<yw‘>a
il [oec peoca) [bease]

Leaves contain possible orderings of a, b, ¢
R. Rao, CSE 373 5

Decision Trees and Sorting

+ A Decision TreeisaBinary Tree such that:
< Each node = a set of orderings
< Each edge = 1 comparison
< Each leaf = 1 unique ordering
< How many leavesfor N distinct elements?

+ Only 1 leaf has sorted ordering

+ Each sorting agorithm corresponds to a decision tree
< Finds correct leaf by following edges (= comparisons)

+ Run time > maximum no. of comparisons
< Depends on: depth of decision tree
< Wheat is the depth of adecision tree for N distinct elements?

R. Rao, CSE 373 6

Lower Bound on Comparison-Based Sorting

+ Suppose you have abinary tree of depth d . How many

leaves can the tree have?
< E.g.depthd=1-> at most 2 leaves, d = 2 - at most 4 leaves, etc.

R. Rao, CSE 373

Lower Bound on Comparison-Based Sorting

+ A binary tree of depth d has at most 29 |eaves
< E.g.depthd=1-> 2leaves, d=2 > 4 leaves, €tc.
= Can prove by induction

+ Number of leavesL <29 > d>logL

+ DecisiontreehasL = N! leaves - itsdepth d > log(N!)
< Whatislog(N!')? (first, what islog(A-B)?)

R. Rao, CSE 373

Lower Bound on Comparison-Based Sorting

+ DecisiontreehasL = N! leaves - itsdepth d > log(N!)
< What islog(N!)? (first, what islog(A+B)?)
< log(N!) =log N +log(N-1) + ... log(N/2) + ... +log 1
>log N +1og(N-1) + ... log(N/2) (N/2termsonly)
> (N/2)+log(N/2) = Q(N log N)

+ Result: Any sorting algorithm based on comparisons between
elements requires Q(N log N) comparisons
< Run time of any comparison-based sorting algorithm is Q(N
log N)
= Can never get an O(N log log N) algorithm (sorry, Pat Swel)

R. Rao, CSE 373 9

Hey! (you say)...what about Bucket Sort?

+ Recall: Bucket sort - Elements are integers known to
alwaysbein therange 0 to B-1
< ldea: Array Count has B dots (“buckets’)
1. Initidize: Count[i] =0fori=0toB-1
2. Giveninput integer i, Count[i]++
3. After reading all inputs, scan Count[i] for i =0to B-1 and print i if
Count][i] is non-zero

+ What isthe running time for sorting N integers?

R. Rao, CSE 373 10

Hey! (you say)...what about Bucket Sort?

+ Recall: Bucket sort > Elements are integers known to
aways bein therange 0 to B-1
Idea: Array Count has B slots (“buckets’)
1. Initidize: Count[i] =0fori=0toB-1
2. If input integer =i, Count[i]++
3. After reading al inputs, scan Count[i] for i =0to B-1; printi if
Count][i] # 0 - sorted output

+ What isthe running time for sorting N integers?
= Running Time: O(B+N) [B to zero/scan the array and N to read the
input]
< If B is®(N), then running time for Bucket sort = O(N)
> Doesn’t thisviolatethe O(N log N) lower bound result??

+ No—When we do Count[i]++, we are comparing one
element with all B elements, not just two elements
R. Rao, CSE 373 11

Radix Sort = Stable Bucket Sort

+ Problem: What if number of buckets needed is too large?

+ Recall: Stable sort = a sort that does not change order of
items with same key

+ Radix sort = stable bucket sort on “dlices’ of key
© E.g. Divideinto integerg/strings in digits/characters

@ Bucket-sort from |east significant to most significant

digit/character
< Stability ensures keys already sorted stay sorted

o Takes O(P(B+N)) time where P = number of digits

R. Rao, CSE 373 12

Radix Sort Example

478 721 03 003
537 Bucket 3 Bucket 09 Bucket 009
9 sort 123 sort 721 | sort 038
1's 10's 100's
721 | digit 537 | digit 123] digit 067
3 Y | s37 | 123
38 478 38 478
123 38 67 537
67 9 478 721
R. Rao, CSE 373 13

Internal versus External Sorting

+ So far assumed that accessing A[i] isfast — Array A is stored

ininterna memory (RAM)
= Algorithms so far are good for internal sorting

+ What if A issolargethat it doesn’t fit in internal memory?
< Dataon disk or tape
< Delay in accessing A[i] — e.g. need to spin disk and move head

+ Need sorting algorithms that minimize disk/tape accesstime
< External sorting — Basic |dea:
» Load chunk of datainto RAM, sort, store this“run” on disk/tape
» Usethe Merge routine from Mergesort to merge runs
» Repeat until you have only one run (one sorted chunk)
» Text gives some examples

+ Waittaminute!! How important is external sorting?
R. Rao, CSE 373 14

Internal Memory is getting dirt cheap...

Price (in US$) for 1 MB of RAM

Average
Low

D S = T PO PO GGG G0 R P Ja Fu NN CACAT T

A G AR S B B b B e R B
O™ O™ RO S0 O &S00 N & O n
NSNS CNEONE OS] SOE CEC QOE 0 Sonon

T I T i I
SFApruldet? 8 Aprduldct99AprduDetBEAprduldct81 Apr

From: http://www.macresource.com/mrp/ramwatch/trend.shtml
R. Rao, CSE 373 15

External Sorting: A (soon-to-be) Relic of the Past?

+ Price of internal memory is dropping, memory sizeis
increasing, both at exponential rates (Moore's law)

+ Quitelikely that in the future, datawill probably fit in
internal memory for reasonably large input sizes

+ Tapes seldom used these days — disks are faster and getting
cheaper with greater capacity

+ S0, need not worry too much about external sorting

+ For all practical purposes, internal sorting algorithms such as
Quicksort should prove to be efficient

R. Rao, CSE 373 16

Okay...so let’ stak about performance in practice

Insertion sort ~ — Heapsort
g _ Shellsort
c
g 0| o]
éi < Quicksort
=
() 107"
£
p [Datafrom
g " I textbook
Chap. 7]
R. Rao, CSE 373 Input Size N 17

Summary of Sorting

+ Sorting choices:
< O(N2) — Bubblesort, Selection Sort, Insertion Sort
< O(NX) — Shellsort (x = 3/2, 4/3, 716, 2, etc. depending on increment sequence)
< O(N log N) average case running time:
» Heapsort: uses 2 comparisons to move data (between children and
between child and parent) — may not be fast in practice (see graph)

» Mergesort: easy to code but uses O(N) extra space
» Quicksort: fastest in practice but trickier to code, O(N?) worst case

+ Practical advice: When N islarge, use Quicksort with median-of-three
pivot. For small N (< 20), the N log N sorts are slower dueto extra
overhead (larger constants in big-oh notation)

@ For N <20, use Insertion sort
< E.g. In Quicksort, do insertion sort when sub-array size < 20 (instead
of partitioning) and return this sorted sub-array for further processing

R. Rao, CSE 373 18

Next time: Union-Find and Digoint Sets

To do:
Finish reading chapter 7
Start reading chapter 8

Have a great weekend!

R. Rao, CSE 373

19

