CSE 373 Lecture 19: Wrap-Up of Sorting

+ What's on our platter today?
< How fast can the fastest sorting algorithm be?
» Lower bound on comparison-based sorting
< Tricksto sort faster than the lower bound
< External versus Internal Sorting
< Practical comparisons of internal sorting algorithms
< Summary of sorting

+ Covered in Chapter 7 of the textbook

R. Reo, CSE 373 1

How fast can we sort?

+ Heapsort, Mergesort, and Quicksort al runin O(N log N)
best case running time

+ Can wedo any better?

+ Can webelieve Pat Swe (pronounced “ Sway”) from
Swetown (formerly Softwareville), USA, who claimsto have
discovered an O(N log log N) sorting agorithm?

R. Reo, CSE 373 2

The Answer isNo! (if using comparisons only)

+ Recall our basic assumption: we can only compare two
€elements at atime — how doesthis limit the run time?

+ Suppose you are given N elements
< Assume no duplicates — any sorting algorithm must also work for this
case

+ How many possible orderings can you get?
< Example:a, b,c (N=3)

R.Rao, CSE 373 3

The Answer isNo! (if using comparisons only)

+ Recall our basic assumption: we can only compare two
elements at atime— how does this limit the run time?

+ Suppose you are given N elements
< Assume no duplicates — any sorting algorithm must aso work for this
case

+ How many possible orderings can you get?
< Example:a, b,c (N=3)
% Orderings: 1.abc 2.bca 3.cab 4.acb 5.bac 6.cba
< 6orderings=3.221=3!
N choices_ (N-1) choices 1 choice
+ For N elements: ((

= N! orderings

R.Rao, CSE 373 4

A “Decision Tree’

a<b<c, b<c<a,
c<a<b, a<c<b,
b<a<c, c<b<a

a<b<c ‘4b
c<a<b
a<c<b

a<E/\a>c

Leaves contain possible orderings of &, b, ¢
R. Rap, CSE 373

Decision Trees and Sorting

+ A Decision Treeis aBinary Tree such that:
< Each node = aset of orderings
= Each edge = 1 comparison
< Each leaf = 1 unique ordering
< How many leavesfor N distinct elements?

+ Only 1 leaf has sorted ordering

+ Each sorting agorithm corresponds to adecision tree
< Finds correct leaf by following edges (= comparisons)

+ Run time > maximum no. of comparisons

= Depends on: depth of decision tree
< What is the depth of adecision tree for N distinct elements?

R. Reo, CSE 373

Lower Bound on Comparison-Based Sorting

+ Suppose you have abinary tree of depth d . How many
leaves can the tree have?
< E.g.depthd =1 -> at most 2 leaves, d = 2 - at most 4 |eaves, etc.

R.Rao, CSE 373

Lower Bound on Comparison-Based Sorting

+ A binary tree of depth d has at most 24 leaves
< E.g.depthd=1-> 2 leaves, d =2 - 4 |eaves, etc.
< Can prove by induction

+ Number of leavesL <2¢-> d>logL

+ DecisiontreehasL = N! leaves - itsdepth d > log(N!)
< Whatislog(N!)? (first, what islog(A-B)?)

R.Rao, CSE 373

Lower Bound on Comparison-Based Sorting

+ DecisiontreehasL = N! leaves > itsdepth d > log(N!)
< Whatislog(N!)? (first, what islog(A*B)?)
< log(N!) =log N + log(N-1) + ... log(N/2) + ... +log 1
2log N +log(N-1) + ... log(N/2) (N/2termsonly)
> (N/2)+log(N/2) = Q(N log N)
+ Result: Any sorting algorithm based on comparisons between
elements requires Q(N log N) comparisons
< Run time of any comparison-based sorting agorithm is Q(N
log N)
< Can never get an O(N log log N) algorithm (sorry, Pat Swe!)

R. Reo, CSE 373 9

Hey! (you say)...what about Bucket Sort?

+ Recall: Bucket sort > Elements are integers known to
aways bein the range 0 to B-1
< Idea: Array Count has B slots (“buckets”)
1. Initidize: Count[i] =0fori=0toB-1
2. Giveninput integer i, Count[i]++
3. After reading al inputs, scan Countfi] for i = 0to B-1and print i if
Count[i] is non-zero

+ What istherunning time for sorting N integers?

R. Reo, CSE 373 10

Hey! (you say)...what about Bucket Sort?

+ Recall: Bucket sort > Elements are integers known to
always be in the range 0 to B-1
Idea: Array Count has B slots (“buckets”)
1. Initiaize: Count[i] =0fori=0toB-1
2. If input integer = i, Count[i]++
3. After reading al inputs, scan Count[i] for i = 0to B-1; print i if
Count[i] # 0 - sorted output

+ What isthe running time for sorting N integers?
< Running Time: O(B+N) [B to zero/scan the array and N to read the
input]
> If Bis©(N), then running time for Bucket sort = O(N)
<~ Doesn't thisviolate the O(N log N) lower bound result??
+ No - When we do Count[i]++, we are comparing one
element with al B elements, not just two elements
R. Reo, CSE 373 11

Radix Sort = Stable Bucket Sort

+ Problem: What if number of buckets needed is too large?

+ Recall: Stable sort = a sort that does not change order of
items with same key

+ Radix sort = stable bucket sort on “slices” of key
< E.g. Divide into integers/strings in digits/characters
< Bucket-sort from |east significant to most significant
digit/character
< Stability ensures keys already sorted stay sorted
< Takes O(P(B+N)) time where P = number of digits

R.Rao, CSE 373 12

Radix Sort Example

478 721 03 003
537 Bucket 3 Bucket 09 Bucket 009
9 sort 123 | sort 721| sort 038
s 10's 100's

721 digit 537] digit R 123 digit 067
3 | ez | s37 | 123

38 478 38 478

123 38 67 537
67 9 478 721

R.Rao, CSE 373 13

Internal versus External Sorting

+ So far assumed that accessing A[i] isfast — Array A is stored

ininternal memory (RAM)
< Algorithms so far are good for internal sorting

+ What if A issolargethat it doesn't fit in internal memory?
< Dataon disk or tape
< Delay in accessing A[i] — e.g. need to spin disk and move head
+ Need sorting algorithms that minimize disk/tape access time
< External sorting — Basic Idea:
» Load chunk of datainto RAM, sort, store this“run” on disk/tape
» Usethe Merge routine from Mergesort to merge runs
» Repesat until you have only one run (one sorted chunk)
» Text gives some examples

+ Waittaminute!! How important is external sorting?
R. Reo, CSE 373 14

Internal Memory is getting dirt cheap...

Price (in US$) for 1 MB of RAM

Average
au

MGG i1 FOT LG LB £ B £ LN LI 0%
DM@ MU MU GRS QTSN O 1o
SN DD (NS D S DA SN

T T T T I T T T T
97 Apriulle t98 ApriuDct99Aprlu Do tABAprIuDCta1 Apr

From: http://www.macresource.com/mrp/ramwatch/trend.shtml
R. Reo, CSE 373 15

External Sorting: A (soon-to-be) Relic of the Past?

+ Priceof internal memory is dropping, memory sizeis
increasing, both at exponentia rates (Moore' s law)

+ Quite likely that in the future, data will probably fit in
internal memory for reasonably large input sizes

+ Tapes seldom used these days — disks are faster and getting
cheaper with greater capacity

+ So, need not worry too much about external sorting

+ For al practical purposes, internal sorting algorithms such as
Quicksort should prove to be efficient

R. Reo, CSE 373 16

Okay...so let’ stalk about performance in practice

10°

Insertion sort\ — Heapsort
B — shellsort
c
§ ’ — Quicksort
E
Q v
£
= [Datafrom
g " textbook

Chap. 7]

R. Reo, CSE 373 Input Size N 17

Summary of Sorting

+ Sorting choices:

< O(N?) — Bubblesort, Selection Sort, Insertion Sort

< O(NX) — Shellsort (x = 3/2, 4/3, 7/6, 2, etc. depending on increment sequence)

< O(N log N) average case running time:
» Heapsort: uses 2 comparisons to move data (between children and

between child and parent) — may not be fast in practice (see graph)

» Mergesort: easy to code but uses O(N) extra space
» Quicksort: fastest in practice but trickier to code, O(N?) worst case

+ Practical advice: When N islarge, use Quicksort with median-of-three
pivot. For small N (< 20), the N log N sorts are slower due to extra
overhead (larger constants in big-oh notation)

< For N < 20, use Insertion sort
< E.g. In Quicksort, do insertion sort when sub-array size < 20 (instead
of partitioning) and return this sorted sub-array for further processing

R. Reo, CSE 373 18

Next time: Union-Find and Digjoint Sets

Todo:
Finish reading chapter 7
Start reading chapter 8

Have a great weekend!

R. Rao, CSE 373 19

