L ecture 20: The Dynamic Equivalence Problem
(ak.a. Digoint Sets, Union/Find etc.)

+ ThePlot:
< A new problem: Dynamic Equivalence
< The setting:
» Motivation and Definitions
< The players:
» Union and Find, two ADT operations
» Up-tree data structure
< Suspense-filled cliffhanger (to be continued...next time)

+ Covered in Chapter 8 of the textbook

R.Rao, CSE373 Someof the material on these slides are courtesy of: S. Wolfman, CSE 326, 2000

1

Equivalence Relations

+ An equivalence relation R obeys three properties:
1. reflexive: for any x, xRx istrue
2. symmetric: for any x and y, xRy implies yRx
3. transitive: for any X, y, and z, xRy and yRz implies xRz
Preceding relations are all examples of equivalence relations

What are not equivalence relations?

R. Reo, CSE 373 3

Motivation

+ Consider the relation “=" between integers
1. Foranyinteger A,A=A
2. Forintegers A and B, A =B meansthat B = A
3. ForintegersA,B,and C, A =B and B =C meansthat A =C

+ Consider cities connected by two-way roads
1. Aistrivially connected to itself
2. Aisconnected to B means B is connected to A
3. If Alisconnected to B and B is connected to C, then A is connected
toC

+ Consider electrical connections between components on a
computer chip
< 1,2,and 3 are again satisfied

R.Rao, CSE 373 2

Equivalence Relations

+ Anequivalencerelation R obeys three properties:
1. reflexive: for any x, xRx istrue
2. symmetric: for any x and y, xRy implies yRx
3. transitive: for any X, y, and z, XRy and yRz implies xRz

+ Preceding relations are all examples of equivalence relations

+ What are not equivalence relations?
< What about “<” onintegers? (1 and 2 are violated)
< What about “<” on integers? (2 is violated)
< What about “is having an affair with” in a soap opera?
» Victor i.h.aaw. Ashley i.h.aaw. Brad does not imply
Victor i.h.aaw. Brad

R.Rao, CSE 373 4

Equivalence Classes and Digjoint Sets

+ The operator R divides all the elements into disjoint sets of
“equivaent” items

+ Let ~bean equivalencerelation. Then, if A~B, then A and B
arein the same equivalence class.

+ Examples:
< On acomputer chip, if ~ denotes“electrically connected,” then sets
of connected components form equivalence classes
< Onamap, cites that have two-way roads between them form
equivalence classes
< Therelation “Modulo N” divides all integersin N equivalence classes
» E.g.Under Mod5,0~5~10~15..., 1~6~11~16...,,2~7~
12~..,3~8~13~...,and4~9~14~ ...
» 5 equivalence classes (remainders 0 through 4 when divided by 5)

R. Reo, CSE 373 5

Digoint Set ADT

+ Stores N unique elements

+ Two operations:
< Find: Given an element, return the name of its
equivalence class
= Union: Given the names of two equivalence classes,
merge them into one class (which may have anew name
or one of the two old names)
+ ADT divides elementsinto E equivalence classes, L< E<N

< Names of classes are arbitrary e.g. 1 through N, so long as Find
returns the same name for 2 elements in the same equivalence class

R. Reo, CSE 373

Problem Definition

+ Given aset of elements and some equivalence relation ~
between them, we want to figure out the equivalence classes

+ Given an element, we want to find the equivalence classit
belongs to
< E.g. Under mod 5, 13 belongs to the equivalence class of 3
< E.g. For the map example, want to find the equivalence class of
Redmond (al the citiesit is connected to)

+ Given anew element, want to add it to an equivalence class
(union)
< E.g. Under mod 5, since 18 ~ 13, perform a union of 18 with

equivalence class of 13
< E.g. For the map example, Woodinville is connected to Redmond, so
add Woodinville to equivalence class of Redmond

R.Rao, CSE 373

Digoint Set ADT Properties
+ Digjoint set equivalence property: every element of aDS
ADT belongs to exactly one set (its equivalence class)

+ Dynamic equivalence property: the set of an element can
change after execution of aunion

Example: find(4)
Initial Classes = > {148}
{1,48},{23}, 8]

{e. {7,
{5,9,10}

Name of equiv.
classunderlined ynjon(3,6) g

{6

B (238

{23 /

R.Rao, CSE 373

Formal Definition (for Math lovers' eyes only)

+ GivenasetU={a, a, ..., a;}

+ Maintain a partition of U, aset of subsets (or equivalence
classes) of U denoted by {S,, S,, ... , S} such that:
< each pair of subsets § and § aredisjoiknt: §n§ =0
% together, the subsets cover U: U = U S
% each subset has a unique name i=1

+ Union(a, b) creates anew subset which isthe union of a's
subset and b’s subset

+ Find(a) returns aunique name for &' s subset

R. Reo, CSE 373

Implementation Ideas and Tradeoffs

+ How about an array implementation?
< N element array A > A[i] holds the class name for element i
< E.g.if 18 ~ 3, pick 3 asclassname and set A[18] = A[3] =3
< Running time for Find(i) = O(1) (just return A[i])
< Running time for Union(i,j) = O(N)
» If first N/2 elements have class name 1 and next N/2 have class
name 2, Union(1,2) will need to change class names of N/2 items

+ How about linked lists?
< Onelinked list for each class
2 Running time for Union(i,j) and Find(i) = ?

R. Reo, CSE 373 11

Implementation Ideas and Tradeoffs

+ How about an array implementation?
< N element array A = A[i] holds the class name for element i
< E.g.if 18 ~ 3, pick 3 asclassname and set A[18] = A[3] =3
< Running time for Find(i) =? (i = some element)
< Running time for Union(i,j) = ? (i and j are class names)

R. Rao, CSE 373 10

Implementation Ideas and Tradeoffs

+ How about an array implementation?
< N element array A - A[i] holds the class name for element i
< E.g.if 18 ~ 3, pick 3 as classname and set A[18] = A[3] =3
< Running time for Find(i) = O(1) (just return A[i])
< Running time for Union(i,j) = O(N)

+ How about linked lists?
< One linked list for each class
< Running time for Union(i,j) = O(1) (just append one list to the other)
< Running time for Find(i) = O(N) (must scan al listsin worst case)

+ Tradeoff between Union-Find — cannot do both in O(1) time
< N-1 Unions (the max) and M Finds > O(M + N?) or O(N + MN)
< Canwedo thisin O(M + N) time? We will answer this question in this
classand next...but first...

R.Rao, CSE 373 12

Let’sfind anew Data Structure

+ Intuition: Finding the representative member (= class name)
of aset islike the opposite of finding akey in agiven set

+ S0, instead of trees with pointers from each node to its
children, let’s use trees with a pointer from each nodeto its

parent
+ Such trees are known as Up-Trees

R. Reo, CSE 373 13

Example of Find

Find: Just traverse to the root!

Iﬂﬂéi L i

Runtime="?

R. Reo, CSE 373 15

Up-Tree Data Structure

+ Each equivaence class (or NULL NULL |NULL
discrete set) is an up-tree
with itsroot asits e
representative member

+ All members of agiven set o

are nodesin that set’s up-
tree

+ Hash table maps input data
to the node associated with :
that data e.g. input string > {adgbe {cf} {hi}
integer Up-trees are usually not binary!

R. Rao, CSE 373 14

Example of Union

Union: Just hang one root from the other!

union(c,a)

e éi

find(f) = ¢
e find(e) = c

R. Reo, CSE 373 16

Runtime=?

To be continued next class...

(same place, sametime)

Meanwhile...
Finish reading chapter 8

R. Reo, CSE 373

17

