Lecture 24: From Dijkstrato Prim

Dijkstra’ s Shortest Path Algorithm

+ Today’s Topics.
< Dijkstra’s Shortest Path Algorithm
< Depth First Search
< Spanning Trees
< Minimum Spanning Trees
» Prim’s Algorithm

+ Covered in Chapter 9 in the textbook

R.Rao, CSE 373 Some slides based on: CSE 326 by S. Wolfman, 2000

1. Initiaize the cost of each node to «
2. Initialize the cost of the sourceto O

3. Whilethere are unknown nodes l€ft in the
graph
1. Select the unknown node N with the
lowest cost (greedy choice)
2. Mark N as known
3. For each node A adjacent to N
If (N's cost + cost of (N, A)) < A’scost

A'scost = N's cost + cost of (N, A) (Prev dlows
Prev[A] =N //store preceding node pathsto be
R. Rao, CSE 373 reconstructegl)

Single Source, Shortest Path Problem

+ Givenagraph G =(V, E) and a“source” vertex sin V, find
the minimum cost paths from sto every vertex in V

R.Rao, CSE 373

Dijkstra’ s Algorithm (greed in action)

vertex | known | cost | Prev vertex | known | cost | Prev
A No oo - A Yes 8 D
B No oo - B Yes | 10 A
—>
C Yes 0 - C Yes 0 -
D No oo - D Yes 5 E
E No oo - E Yes 2 C
Initial

R.Rao, CSE 373

Analysis of Dijkstra's Algorithm

+ Main loop:
While there are unknown nodes left in the graph «— [V| times

1. Select the unknown node N with the lowest cost «— O(|V))
2. Mark N as known

3. For each node A adjacentto N «— O(|E]) total
If (N's cost + cost of (N, A)) < A’scost
A'scost = N's cost + cost of (N, A)

Total time= V| (O(IV])) +O([E) = O(VF + [E])

Dense graph: |E| = ©(|V]Y) > Total time= O(|VP) = O(|E|) v

Sparse graph: |E| = ©(]V]) = Total time= O(VP) = O(EP) x
Quadratic! Can we do better?

R. Reo, CSE 373

Analysis of Dijkstra’ s Algorithm

Yes! Use apriority queue to store vertices with key = cost

[V] times:

Select the unknown node N with the lowest cost

|E] times: \’delaeMin (2
A's cost = N's cost + cost of (N, A) @) ®

g decreaseKey @ ®

Total runtime=O(|V| log |V| + [E| log |V])

R. Reo, CSE 373

Analysis of Dijkstra’ s Algorithm

Yes! Use apriority queue to store vertices with key = cost

|V| times:

Select the unknown node N with the lowest cost

|E] times: \’ deleteMin 2
A'scost = N's cost + cost of (N, A) @ ®

g decreaseKey @®

Tota runtime="?

R.Rao, CSE 373

Does Dijkstra’s Algorithm Always Work?

+ Dijkstra s agorithm is an example of a greedy algorithm

+ Greedy algorithms always make choices that currently seem
the best

< Short-sighted — no consideration of long-term or global issues
< Locally optimal does not always mean globally optimal

+ In Dijkstra' s case — choose the least cost node, but what if
thereis another path through other verticesthat is cheaper?

+ Can prove: Never happensif al edge weights are positive

R.Rao, CSE 373

The“Cloudy” Proof of Dijkstra's Correctness

Least cost node
Next shortest path from
inside the known cloud

THE KNOWN
CLOUD ¢

Source

If the path to G is the next shortest path,
the path to » must be at least as long.

Therefore, any path through p to ¢ cannot be shorter!

R. Reo, CSE 373 9

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path

Proof is by induction on the # of nodesin the cloud:
< Base case: Initial cloud isjust the source with shortest path 0
< Inductive hypothesis: cloud of k-1 nodes all have shortest
paths
< Inductive step: choose the least cost node G - hasto be the
shortest path to G (previous slide). Add k™ node G to the
cloud

But waitaminute!! What about negative weights??

R. Reo, CSE 373 11

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path

Proof is by induction on the # of nodesin the cloud:
< Base case: Initial cloud isjust the source with shortest path 0
< Inductive hypothesis: cloud of k-1 nodes all have shortest
paths
< Inductive step: choose the least cost node G - hasto be the
shortest path to G (previous slide). Add k" node G to the
cloud

R. Rao, CSE 373 10

Negative Weights: Dijkstra’s Achilles Heel

® 2-®-10
-5 1 @
, ©

Dijkstras C>D (cost = -5) Negative cycles: What's

Least cost path: the shortest path from A

C>E->D (cost=-8) toE?(ortoB, C, or D,
for that matter)

R.Rao, CSE 373 12

Depth First Search (DFS)

+ We used Breadth First Search for finding shortest pathsin an
unweighted graph
< Use aqueue to explore neighbors of source vertex, neighbors of
each neighbor, and so on: 1 edge away, two edges away, etc.

+ Its counterpart: Depth First Search
< A second way to explore all nodesin agraph

+ DFS searches down one path as deep as possible
<% When no new nodes available, it backtracks
< When backtracking, we explore side-paths that weren’t taken

+ DFSallows an easy recursive implementation
< So, DFS uses astack while BFS uses a queue

What about DFS on this graph?

+ What happens when you do DFS(*142")?

Go as deep as possible,

Then backtrack...
R.Rao, CSE 373 13 R. Reo, CSE 373 15
DFS Pseudocode We get a“spanning” tree...

+ Pseudocode for DFS:
DFS (v)
If v is unvisited
mark v as visited
print v (or process v)
for each edge (v,w)
DFS (w)

+ Works for directed or
undirected graphs

+ Running time = O(|V| + |E|)

R. Rao, CSE 373 14

R.Rao, CSE 373

16

DFS and BFS may give different trees...

(B)

©
DFS(C)
7 © ®
T (B
BFS(C) (af ©
© ®

Minimum Spanning Tree (MST)

Weare given a
weighted, undirected
graph G = (V, E), with
weight function

w: E 2> R mapping
edgesto rea valued
weights

Problem: Find the
minimum cost spanning
tree

R. Reo, CSE 373

19

Spanning Tree Definition

+ Spanning tree: asubset of edges from a connected graph
that:
< touches al vertices in the graph (spans the graph)
< forms atree (is connected and contains no cycles)

+ Minimum spanning tree: the spanning tree with the least
total edge cost

R. Rao, CSE 373 18

Why minimum spanning trees?

+ Lotsof applications
+ Minimize length of gas pipelines between cities
+ Find cheapest way to wire a house (with minimum cable)

+ Find away to connect various routers on a network that
minimizestotal delay

+ Etc...

R.Rao, CSE 373

20

Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, a
random and initialize:

V' ={v0} and E' ={}

R. Reo, CSE 373 21

Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, a
random and initialize:

V' ={v0} and E' ={}

2. Chooseavertex vnotinV'
such that edge weight from
vtoavertexinV' is
minimal (greedy again!)

3. AddvtoV andtheedgeto
E' if no cycleis created

R. Reo, CSE 373 23

Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, at
random and initialize:

V' ={v0} and E' ={}

2. Chooseavertex vhotinV'
such that edge weight from
vtoavertexinV' is
minimal (greedy again!)

R. Rao, CSE 373 22

Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, at
random and initialize:

V' ={v0} and E' ={}

2. Chooseavertex vnotinV
such that edge weight from
vtoavertexinV' is
minimal (greedy again!)

3. AddvtoV andtheedgeto 1
E' if nocycleis created

4. Repeat until al vertices
have been added

R.Rao, CSE 373 24

Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, a
random and initialize:

V' ={v0} and E' ={}

2. Chooseavertex vnotinV'
such that edge weight from
vtoavertexinV is
minimal (greedy again!)

3. AddvtoV andtheedgeto
E' if no cycleis created

4. Repeat until al vertices
have been added

R. Reo, CSE 373 25

Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, a
random and initialize:

V' ={v0} and E' ={}

2. Chooseavertex vnotinV' Q
such that edge weight from
vtoavertexinV' is
minimal (greedy again!)

3. AddvtoV andtheedgeto
E' if no cycleis created

4. Repeat until al vertices
have been added

R. Reo, CSE 373 27

Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, at
random and initialize:

V' ={v0} and E' ={}

2. Chooseavertex vnotinV' 4
such that edge weight from
vtoavertexinV' is
minimal (greedy again!)

3. AddvtoV andtheedgeto
E' if nocycleis created

4. Repeat until al vertices
have been added

R. Rao, CSE 373 26

Prim’s Algorithm for Finding the MST

Done!
Totalcost=1+3+4+1+1
=10

R.Rao, CSE 373 28

Next Class:
Analysis of Prim’s Algorithm
Kruskal takes abow —faster MST

ToDo:
Programming Assignment #2
(Don’'t wait until the last few days!!!)
Continue chapter 9

R. Reo, CSE 373 29

