
1R. Rao, CSE 373

Lecture 24: From Dijkstra to Prim

✦ Today’s Topics:
➭ Dijkstra’s Shortest Path Algorithm
➭ Depth First Search
➭ Spanning Trees
➭Minimum Spanning Trees

➧ Prim’s Algorithm

✦ Covered in Chapter 9 in the textbook

Some slides based on: CSE 326 by S. Wolfman, 2000

2R. Rao, CSE 373

Single Source, Shortest Path Problem

✦ Given a graph G = (V, E) and a “source” vertex s in V, find
the minimum cost paths from s to every vertex in V

A

C

B

D

E

2

2

1
1

9
3

8

3

Source

3R. Rao, CSE 373

Dijkstra’s Shortest Path Algorithm

1. Initialize the cost of each node to ∞

2. Initialize the cost of the source to 0

3. While there are unknown nodes left in the
graph
1. Select the unknown node N with the

lowest cost (greedy choice)
2. Mark N as known
3. For each node A adjacent to N

If (N’s cost + cost of (N, A)) < A’s cost
A’s cost = N’s cost + cost of (N, A)
Prev[A] = N //store preceding node

A

C

B

D

E

2

2

1
1

9
3

8

3

(Prev allows
paths to be
reconstructed)

4R. Rao, CSE 373

Dijkstra’s Algorithm (greed in action)

A

C

B

D E

2

2

11

9
3

8

3

Initial Final

-∞NoE

-∞NoD

-0YesC

-∞NoB

-∞NoA

Prevcostknownvertex

C2YesE

E5YesD

-0YesC

A10YesB

D8YesA

Prevcostknownvertex

5R. Rao, CSE 373

Analysis of Dijkstra’s Algorithm

✦ Main loop:
While there are unknown nodes left in the graph
1. Select the unknown node N with the lowest cost
2. Mark N as known
3. For each node A adjacent to N

If (N’s cost + cost of (N, A)) < A’s cost
A’s cost = N’s cost + cost of (N, A)

|V| times
O(|V|)

O(|E|) total

Total time = |V| (O(|V|)) +O(|E|) = O(|V|2 + |E|)
Dense graph: |E| = Θ(|V|2) ! Total time = O(|V|2) = O(|E|) √
Sparse graph: |E| = Θ(|V|) ! Total time = O(|V|2) = O(|E|2) χ

Quadratic! Can we do better?

6R. Rao, CSE 373

Analysis of Dijkstra’s Algorithm

Select the unknown node N with the lowest cost

deleteMin

A’s cost = N’s cost + cost of (N, A)

decreaseKey

|V| times:

|E| times:

Yes! Use a priority queue to store vertices with key = cost

Total run time = ?

2

4 6

7 5

7R. Rao, CSE 373

Analysis of Dijkstra’s Algorithm

Select the unknown node N with the lowest cost

deleteMin

A’s cost = N’s cost + cost of (N, A)

decreaseKey

|V| times:

|E| times:

Yes! Use a priority queue to store vertices with key = cost

Total run time = O(|V| log |V| + |E| log |V|)

2

4 6

7 5

8R. Rao, CSE 373

Does Dijkstra’s Algorithm Always Work?

✦ Dijkstra’s algorithm is an example of a greedy algorithm

✦ Greedy algorithms always make choices that currently seem
the best
➭ Short-sighted – no consideration of long-term or global issues
➭ Locally optimal does not always mean globally optimal

✦ In Dijkstra’s case – choose the least cost node, but what if
there is another path through other vertices that is cheaper?

✦ Can prove: Never happens if all edge weights are positive

9R. Rao, CSE 373

THE KNOWN
CLOUD

G Next shortest path from
inside the known cloud

P

The “Cloudy” Proof of Dijkstra’s Correctness

If the path to G is the next shortest path,
the path to P must be at least as long.

Therefore, any path through P to G cannot be shorter!

Source

Least cost node

10R. Rao, CSE 373

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path

Proof is by induction on the # of nodes in the cloud:
➭ Base case: Initial cloud is just the source with shortest path 0
➭ Inductive hypothesis: cloud of k-1 nodes all have shortest

paths
➭ Inductive step: choose the least cost node G ! has to be the

shortest path to G (previous slide). Add kth node G to the
cloud

11R. Rao, CSE 373

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path

Proof is by induction on the # of nodes in the cloud:
➭ Base case: Initial cloud is just the source with shortest path 0
➭ Inductive hypothesis: cloud of k-1 nodes all have shortest

paths
➭ Inductive step: choose the least cost node G ! has to be the

shortest path to G (previous slide). Add kth node G to the
cloud

But waitaminute!! What about negative weights??

Kevin
Bacon

Gotcha!!

12R. Rao, CSE 373

Negative Weights: Dijkstra’s Achilles Heel

A B

C D

E

2
10

1-5

2
Negative cycles: What’s
the shortest path from A
to E? (or to B, C, or D,
for that matter)

A

C

B

D
E

2

2

11

9
3

-5

-10

Dijkstra: C!D (cost = -5)
Least cost path:
C!E!D (cost = -8)

13R. Rao, CSE 373

Depth First Search (DFS)

✦ We used Breadth First Search for finding shortest paths in an
unweighted graph
➭ Use a queue to explore neighbors of source vertex, neighbors of

each neighbor, and so on: 1 edge away, two edges away, etc.

✦ Its counterpart: Depth First Search
➭ A second way to explore all nodes in a graph

✦ DFS searches down one path as deep as possible
➭ When no new nodes available, it backtracks
➭ When backtracking, we explore side-paths that weren’t taken

✦ DFS allows an easy recursive implementation
➭ So, DFS uses a stack while BFS uses a queue

14R. Rao, CSE 373

DFS Pseudocode

✦ Pseudocode for DFS:
DFS(v)
If v is unvisited
mark v as visited
print v (or process v)
for each edge (v,w)
DFS(w)

✦ Works for directed or
undirected graphs

✦ Running time = O(|V| + |E|)

A

B
C

D E

A

C

B

D
E

DFS(C)

DFS(C)

15R. Rao, CSE 373

What about DFS on this graph?

✦ What happens when you do DFS(“142”)?

321143

142

322

326

341370

378

401

421Go as deep as possible,
Then backtrack…

16R. Rao, CSE 373

We get a “spanning” tree…

321143

142

322

326

341370

378

401

421

17R. Rao, CSE 373

DFS and BFS may give different trees…

DFS(C)

A

B
C

D E

A

B
C

D E

A

B
C

D E

BFS(C)

18R. Rao, CSE 373

✦ Spanning tree: a subset of edges from a connected graph
that:
➭ touches all vertices in the graph (spans the graph)
➭ forms a tree (is connected and contains no cycles)

✦ Minimum spanning tree: the spanning tree with the least
total edge cost

Spanning Tree Definition

4 7

1 5

9

2

19R. Rao, CSE 373

Minimum Spanning Tree (MST)

1

2 3 4

6 5

10
1

5

4

3

2

6
1

1

8

We are given a
weighted, undirected
graph G = (V, E), with
weight function
w: E ! R mapping
edges to real valued
weights

Problem: Find the
minimum cost spanning
tree

20R. Rao, CSE 373

Why minimum spanning trees?

✦ Lots of applications

✦ Minimize length of gas pipelines between cities

✦ Find cheapest way to wire a house (with minimum cable)

✦ Find a way to connect various routers on a network that
minimizes total delay

✦ Etc…

21R. Rao, CSE 373

1

2 3 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

22R. Rao, CSE 373

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is
minimal (greedy again!)

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

v

23R. Rao, CSE 373

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is
minimal (greedy again!)

3. Add v to V’ and the edge to
E’ if no cycle is created

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

v

24R. Rao, CSE 373

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is
minimal (greedy again!)

3. Add v to V’ and the edge to
E’ if no cycle is created

4. Repeat until all vertices
have been added

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

v

25R. Rao, CSE 373

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is
minimal (greedy again!)

3. Add v to V’ and the edge to
E’ if no cycle is created

4. Repeat until all vertices
have been added

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

26R. Rao, CSE 373

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is
minimal (greedy again!)

3. Add v to V’ and the edge to
E’ if no cycle is created

4. Repeat until all vertices
have been added

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

27R. Rao, CSE 373

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is
minimal (greedy again!)

3. Add v to V’ and the edge to
E’ if no cycle is created

4. Repeat until all vertices
have been added

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

28R. Rao, CSE 373

Done!
Total cost = 1 + 3 + 4 + 1 + 1

= 10

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

1

4

3

1
1

29R. Rao, CSE 373

Next Class:

Analysis of Prim’s Algorithm

Kruskal takes a bow – faster MST

To Do:

Programming Assignment #2

(Don’t wait until the last few days!!!)

Continue chapter 9

