Lecture 24: From Dijkstrato Prim

Dijkstra’ s Shortest Path Algorithm

+ Today’s Topics.
< Dijkstra’s Shortest Path Algorithm
< Depth First Search
< Spanning Trees
< Minimum Spanning Trees
» Prim’s Algorithm

+ Covered in Chapter 9 in the textbook

R.Rao, CSE 373 Some slides based on: CSE 326 by S. Wolfman, 2000

1. Initiaize the cost of each node to «
2. Initialize the cost of the sourceto O

3. Whilethere are unknown nodes l€ft in the
graph
1. Select the unknown node N with the
lowest cost (greedy choice)
2. Mark N as known
3. For each node A adjacent to N
If (N's cost + cost of (N, A)) < A’scost

A'scost = N's cost + cost of (N, A) (Prev dlows
Prev[A] =N //store preceding node pathsto be
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Single Source, Shortest Path Problem

+ Givenagraph G =(V, E) and a“source” vertex sin V, find
the minimum cost paths from sto every vertex in V
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Dijkstra’ s Algorithm (greed in action)

vertex | known | cost | Prev vertex | known | cost | Prev
A No oo - A Yes 8 D
B No oo - B Yes | 10 A
—>
C Yes 0 - C Yes 0 -
D No oo - D Yes 5 E
E No oo - E Yes 2 C
Initial
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Analysis of Dijkstra's Algorithm

+ Main loop:
While there are unknown nodes left in the graph «— [V| times

1. Select the unknown node N with the lowest cost «— O(|V))
2. Mark N as known

3. For each node A adjacentto N «— O(|E]) total
If (N's cost + cost of (N, A)) < A’scost
A'scost = N's cost + cost of (N, A)

Total time= V| (O(IV])) +O([E) = O(VF + [E])

Dense graph: |E| = ©(|V]Y) > Total time= O(|VP) = O(|E|) v

Sparse graph: |E| = ©(]V]) = Total time= O(VP) = O(EP) x
Quadratic! Can we do better?
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Analysis of Dijkstra’ s Algorithm

Yes! Use apriority queue to store vertices with key = cost

[V] times:

Select the unknown node N with the lowest cost

|E] times: \’delaeMin (2
A's cost = N's cost + cost of (N, A) @) ®

g decreaseKey @ ®

Total runtime=O(|V| log |V| + [E| log |V])
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Analysis of Dijkstra’ s Algorithm

Yes! Use apriority queue to store vertices with key = cost

|V| times:

Select the unknown node N with the lowest cost

|E] times: \’ deleteMin 2
A'scost = N's cost + cost of (N, A) @ ®

g decreaseKey @®

Tota runtime="?
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Does Dijkstra’s Algorithm Always Work?

+ Dijkstra s agorithm is an example of a greedy algorithm

+ Greedy algorithms always make choices that currently seem
the best

< Short-sighted — no consideration of long-term or global issues
< Locally optimal does not always mean globally optimal

+ In Dijkstra' s case — choose the least cost node, but what if
thereis another path through other verticesthat is cheaper?

+ Can prove: Never happensif al edge weights are positive
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The“Cloudy” Proof of Dijkstra's Correctness

Least cost node
Next shortest path from
inside the known cloud

THE KNOWN
CLOUD ¢

Source

If the path to G is the next shortest path,
the path to » must be at least as long.

Therefore, any path through p to ¢ cannot be shorter!

R. Reo, CSE 373 9

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path

Proof is by induction on the # of nodesin the cloud:
< Base case: Initial cloud isjust the source with shortest path 0
< Inductive hypothesis: cloud of k-1 nodes all have shortest
paths
< Inductive step: choose the least cost node G - hasto be the
shortest path to G (previous slide). Add k™ node G to the
cloud

But waitaminute!! What about negative weights??
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Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path

Proof is by induction on the # of nodesin the cloud:
< Base case: Initial cloud isjust the source with shortest path 0
< Inductive hypothesis: cloud of k-1 nodes all have shortest
paths
< Inductive step: choose the least cost node G - hasto be the
shortest path to G (previous slide). Add k" node G to the
cloud
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Negative Weights: Dijkstra’s Achilles Heel

® 2-®-10
-5 1 @
, ©

Dijkstras C>D (cost = -5) Negative cycles: What's

Least cost path: the shortest path from A

C>E->D (cost=-8) toE?(ortoB, C, or D,
for that matter)
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Depth First Search (DFS)

+ We used Breadth First Search for finding shortest pathsin an
unweighted graph
< Use aqueue to explore neighbors of source vertex, neighbors of
each neighbor, and so on: 1 edge away, two edges away, etc.

+ Its counterpart: Depth First Search
< A second way to explore all nodesin agraph

+ DFS searches down one path as deep as possible
<% When no new nodes available, it backtracks
< When backtracking, we explore side-paths that weren’t taken

+ DFSallows an easy recursive implementation
< So, DFS uses astack while BFS uses a queue

What about DFS on this graph?

+ What happens when you do DFS(*142")?

Go as deep as possible,

Then backtrack...
R.Rao, CSE 373 13 R. Reo, CSE 373 15
DFS Pseudocode We get a“spanning” tree...

+ Pseudocode for DFS:
DFS (v)
If v is unvisited
mark v as visited
print v (or process v)
for each edge (v,w)
DFS (w)

+ Works for directed or
undirected graphs

+ Running time = O(|V| + |E|)
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DFS and BFS may give different trees...

(B)

©
DFS(C)
7 © ®
T (B
BFS(C) (af ©
© ®

Minimum Spanning Tree (MST)

Weare given a
weighted, undirected
graph G = (V, E), with
weight function

w: E 2> R mapping
edgesto rea valued
weights

Problem: Find the
minimum cost spanning
tree
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Spanning Tree Definition

+ Spanning tree: asubset of edges from a connected graph
that:
< touches al vertices in the graph (spans the graph)
< forms atree (is connected and contains no cycles)

+ Minimum spanning tree: the spanning tree with the least
total edge cost
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Why minimum spanning trees?

+ Lotsof applications
+ Minimize length of gas pipelines between cities
+ Find cheapest way to wire a house (with minimum cable)

+ Find away to connect various routers on a network that
minimizestotal delay

+ Etc...
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Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, a
random and initialize:

V' ={v0} and E' ={}
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Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, a
random and initialize:

V' ={v0} and E' ={}

2. Chooseavertex vnotinV'
such that edge weight from
vtoavertexinV' is
minimal (greedy again!)

3. AddvtoV andtheedgeto
E' if no cycleis created
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Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, at
random and initialize:

V' ={v0} and E' ={}

2. Chooseavertex vhotinV'
such that edge weight from
vtoavertexinV' is
minimal (greedy again!)
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Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, at
random and initialize:

V' ={v0} and E' ={}

2. Chooseavertex vnotinV
such that edge weight from
vtoavertexinV' is
minimal (greedy again!)

3. AddvtoV andtheedgeto 1
E' if nocycleis created

4. Repeat until al vertices
have been added
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Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, a
random and initialize:

V' ={v0} and E' ={}

2. Chooseavertex vnotinV'  Q
such that edge weight from
vtoavertexinV' is
minimal (greedy again!)

3. AddvtoV andtheedgeto
E' if no cycleis created

4. Repeat until al vertices
have been added
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Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick avertex, VO, at
random and initialize:

V' ={v0} and E' ={}

2. Chooseavertex vnotinV' 4
such that edge weight from
vtoavertexinV' is
minimal (greedy again!)

3. AddvtoV andtheedgeto
E' if nocycleis created

4. Repeat until al vertices
have been added
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Prim’s Algorithm for Finding the MST

Done!
Totalcost=1+3+4+1+1
=10
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Next Class:
Analysis of Prim’s Algorithm
Kruskal takes abow —faster MST

ToDo:
Programming Assignment #2
(Don’'t wait until the last few days!!!)
Continue chapter 9
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