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Lecture 24: From Dijkstra to Prim

✦ Today’s Topics:
➭ Dijkstra’s Shortest Path Algorithm
➭ Depth First Search
➭ Spanning Trees
➭Minimum Spanning Trees

➧ Prim’s Algorithm

✦ Covered in Chapter 9 in the textbook

Some slides based on: CSE 326 by S. Wolfman, 2000
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Single Source, Shortest Path Problem

✦ Given a graph G = (V, E) and a “source” vertex s in V, find
the minimum cost paths from s to every vertex in V
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Dijkstra’s Shortest Path Algorithm

1. Initialize the cost of each node to ∞

2. Initialize the cost of the source to 0

3. While there are unknown nodes left in the
graph
1. Select the unknown node N with the

lowest cost (greedy choice)
2. Mark N as known
3. For each node A adjacent to N

If (N’s cost + cost of (N, A)) < A’s cost
A’s cost = N’s cost + cost of (N, A)
Prev[A] = N //store preceding node
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paths to be
reconstructed)
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Dijkstra’s Algorithm (greed in action)
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Analysis of Dijkstra’s Algorithm

✦ Main loop:
While there are unknown nodes left in the graph
1. Select the unknown node N with the lowest cost
2. Mark N as known
3. For each node A adjacent to N

If (N’s cost + cost of (N, A)) < A’s cost
A’s cost = N’s cost + cost of (N, A)

|V| times
O(|V|)

O(|E|) total

Total time = |V| (O(|V|)) +O(|E|) = O(|V|2 + |E|)
Dense graph: |E| = Θ(|V|2) ! Total time = O(|V|2) = O(|E|) √
Sparse graph: |E| = Θ(|V|) ! Total time = O(|V|2) = O(|E|2) χ

Quadratic! Can we do better?
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Analysis of Dijkstra’s Algorithm

Select the unknown node N with the lowest cost

deleteMin

A’s cost = N’s cost + cost of (N, A)

decreaseKey

|V| times:

|E| times:

Yes! Use a priority queue to store vertices with key = cost

Total run time = ?
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Analysis of Dijkstra’s Algorithm

Select the unknown node N with the lowest cost

deleteMin

A’s cost = N’s cost + cost of (N, A)

decreaseKey

|V| times:

|E| times:

Yes! Use a priority queue to store vertices with key = cost

Total run time = O(|V| log |V| + |E| log |V|)
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Does Dijkstra’s Algorithm Always Work?

✦ Dijkstra’s algorithm is an example of a greedy algorithm

✦ Greedy algorithms always make choices that currently seem
the best
➭ Short-sighted – no consideration of long-term or global issues
➭ Locally optimal does not always mean globally optimal

✦ In Dijkstra’s case – choose the least cost node, but what if
there is another path through other vertices that is cheaper?

✦ Can prove: Never happens if all edge weights are positive
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THE KNOWN
CLOUD

G Next shortest path from
inside the known cloud

P

The “Cloudy” Proof of Dijkstra’s Correctness

If the path to G is the next shortest path,
the path to P must be at least as long.

Therefore, any path through P to G cannot be shorter!

Source

Least cost node
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Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path

Proof is by induction on the # of nodes in the cloud:
➭ Base case: Initial cloud is just the source with shortest path 0
➭ Inductive hypothesis: cloud of k-1 nodes all have shortest

paths
➭ Inductive step: choose the least cost node G ! has to be the

shortest path to G (previous slide). Add kth node G to the
cloud
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Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path

Proof is by induction on the # of nodes in the cloud:
➭ Base case: Initial cloud is just the source with shortest path 0
➭ Inductive hypothesis: cloud of k-1 nodes all have shortest

paths
➭ Inductive step: choose the least cost node G ! has to be the

shortest path to G (previous slide). Add kth node G to the
cloud

But waitaminute!! What about negative weights??

Kevin
Bacon

Gotcha!!
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Negative Weights: Dijkstra’s Achilles Heel
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the shortest path from A
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Dijkstra: C!D (cost = -5)
Least cost path:
C!E!D (cost = -8)
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Depth First Search (DFS)

✦ We used Breadth First Search for finding shortest paths in an
unweighted graph
➭ Use a queue to explore neighbors of source vertex, neighbors of

each neighbor, and so on: 1 edge away, two edges away, etc.

✦ Its counterpart: Depth First Search
➭ A second way to explore all nodes in a graph

✦ DFS searches down one path as deep as possible
➭ When no new nodes available, it backtracks
➭ When backtracking, we explore side-paths that weren’t taken

✦ DFS allows an easy recursive implementation
➭ So, DFS uses a stack while BFS uses a queue
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DFS Pseudocode

✦ Pseudocode for DFS:
DFS(v)
If v is unvisited
mark v as visited
print v (or process v)
for each edge (v,w)
DFS(w)

✦ Works for directed or
undirected graphs

✦ Running time = O(|V| + |E|)
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What about DFS on this graph?

✦ What happens when you do DFS(“142”)?
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Then backtrack…
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We get a “spanning” tree…
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DFS and BFS may give different trees…

DFS(C)
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✦ Spanning tree: a subset of edges from a connected graph
that:
➭ touches all vertices in the graph (spans the graph)
➭ forms a tree (is connected and contains no cycles)

✦ Minimum spanning tree: the spanning tree with the least
total edge cost

Spanning Tree Definition
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Minimum Spanning Tree (MST)
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We are given a
weighted, undirected
graph G = (V, E), with
weight function
w: E ! R mapping
edges to real valued
weights

Problem: Find the
minimum cost spanning
tree
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Why minimum spanning trees?

✦ Lots of applications

✦ Minimize length of gas pipelines between cities

✦ Find cheapest way to wire a house (with minimum cable)

✦ Find a way to connect various routers on a network that
minimizes total delay

✦ Etc…
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Prim’s Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}
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1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is
minimal (greedy again!)
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1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is
minimal (greedy again!)

3. Add v to V’ and the edge to
E’ if no cycle is created
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1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is
minimal (greedy again!)

3. Add v to V’ and the edge to
E’ if no cycle is created

4. Repeat until all vertices
have been added
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1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is
minimal (greedy again!)

3. Add v to V’ and the edge to
E’ if no cycle is created

4. Repeat until all vertices
have been added
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1. Starting from an empty
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1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
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Done!
Total cost = 1 + 3 + 4 + 1 + 1

= 10

Prim’s Algorithm for Finding the MST
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Next Class:

Analysis of Prim’s Algorithm

Kruskal takes a bow – faster MST

To Do:

Programming Assignment #2

(Don’t wait until the last few days!!!)

Continue chapter 9


