
1R. Rao, CSE 373

Lecture 25: Kruskal and beyond…

✦ What we will munch on today:
➭Minimum Spanning Trees

➧ Prim’s Algorithm
➧ Kruskal’s Algorithm

➭ Those Puzzles from 4th grade!
➭ Euler Circuits and Tours

✦ Covered in Chapter 9 in the textbook

Some slides based on: CSE 326 by S. Wolfman, 2000

2R. Rao, CSE 373

✦ Spanning tree: subset of edges from a connected graph G
= (V,E) that:
1. touches all vertices in the graph (spans the graph), and
2. forms a tree (is connected, with no cycles ! |V|-1 edges)

✦ Minimum spanning tree (MST): spanning tree with the
least total edge cost

Recall from Last Time: Spanning Trees

4 7

1 5

9

2

3R. Rao, CSE 373

Why greed works for finding MSTs…

✦ For any spanning tree T, inserting an edge e not in T creates
a cycle ! Removing any edge gives back a spanning tree
➭ If e had a lower cost than removed edge, we get a lower cost

spanning tree

✦ Idea: Create a spanning tree as follows:
1. Add an edge of minimum cost that doesn’t create a cycle
2. Repeat Step 1 for |V|-1 edges

✦ This spanning tree has minimum cost because:
➭ if you can replace an edge with another edge of lower cost

without creating a cycle, our algorithm would have picked it

✦ Two MST algorithms: Prim (1957) and Kruskal, Jr. (1956)
➭ Differ in how an edge of minimum cost is picked

4R. Rao, CSE 373

1. Starting from an empty
tree, T, pick a vertex, v0, at
random and initialize:
V’ = {v0} and E’ = {}

2. Choose a vertex v not in V’
such that edge weight from
v to a vertex in V’ is
minimal (get greedy!)

3. Add v to V’ and the edge to
E’ if no cycle is created

4. Repeat until all vertices
have been added

Prim’s Algorithm for Finding the MST

1

2 3 4

6 5

10
1

5

4

3

2

6
1

1

8

v0

5R. Rao, CSE 373

Prim’s Algorithm: Implemented and Analyzed

✦ Implementation details:
1. Initialize cost of each node to ∞ and mark it unknown
2. Initialize cost of one selected node S to 0, with Prev[S] = 0
3. While there are unknown nodes left in the graph

1. Select the unknown node N with the lowest cost
2. Mark N as known
3. For each unknown node A adjacent to N

If cost of (N, A) < A’s cost
A’s cost = cost of (N, A)
Prev[A] = N //store preceding node

✦ This is almost identical to Dijkstra’s algorithm!

✦ Run time is O(|V|2) without heaps and O(|V| log |V| + |E| log
|V|) using binary heaps

6R. Rao, CSE 373

✦ In 1956, J. B. Kruskal, Jr. found another way to find MSTs

✦ Main Idea: Select edges in order of increasing cost and
accept an edge only if it does not cause a cycle

✦ Pseudocode for Kruskal’s MST algorithm:
➭ Put all the vertices into single node trees by themselves
➭ Put all the edges in a priority queue with key = edge cost
➭ Repeat until |V|-1 edges have been accepted

➧ Extract cheapest edge
➧ If it forms a cycle, ignore it

else accept the edge – it will join two existing trees
and yield a larger tree

➭ Return the accepted edges (they form the spanning tree)

Kruskal finds another greedy way to MST

7R. Rao, CSE 373

Kruskal’s Algorithm in C

Forest Kruskal_MST(Graph g, int n, double **costs)
{

Forest T;
Queue q;
Edge e;
T = ConsForest(g);
q = BuildHeap(g, costs);
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin(q);

} while (Cycle(e, T));
AddEdge(T, e);

}
return T;

}

Initial Forest: single vertex trees

Priority Q of edges

n = |V|

8R. Rao, CSE 373

Kruskal’s Algorithm in C

Forest Kruskal_MST(Graph g, int n, double **costs)
{

Forest T;
Queue q;
Edge e;
T = ConsForest(g);
q = BuildHeap(g, costs);
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin(q);

} while (Cycle(e, T));
AddEdge(T, e);

}
return T;

}

Need n-1 edges
to fully connect (span)

n vertices

9R. Rao, CSE 373

Kruskal’s Algorithm in C

Forest Kruskal_MST(Graph g, int n, double **costs)
{

Forest T;
Queue q;
Edge e;
T = ConsForest(g);
q = BuildHeap(g, costs);
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin(q);

} while (Cycle(e, T));
AddEdge(T, e);

}
return T;

}

Try the cheapest edge

Until we find one that doesn’t
form a cycle

... and add it to the forest!

10R. Rao, CSE 373

But how do
we detect a

cycle?

Kruskal’s Algorithm in C

Forest Kruskal_MST(Graph g, int n, double **costs)
{

Forest T;
Queue q;
Edge e;
T = ConsForest(g);
q = BuildHeap(g, costs);
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin(q);

} while (Cycle(e, T));
AddEdge(T, e);

}
return T;

}

11R. Rao, CSE 373

Hints for Detecting Cycles in Kruskal’s Method

✦ Initially, you have n different elements (single vertex trees)

✦ After you have added some edges, you have fewer elements
– several disconnected trees, each with a subset of vertices

✦ When do you get a cycle? If you add an edge (u,v) where
both u and v are already in the same tree Ti, you get a cycle
➭ Therefore, to check for cycles, you only need to find out if u

and v are in the same tree
➭ If not, then the edge can be added and we union vertices in u’s

tree with vertices in v’s tree

✦ What is your favorite data structure for such operations?

12R. Rao, CSE 373

Disjoint Set ADT in Kruskal’s Algorithm

✦ Here’s how the disjoint set ADT makes an appearance:
➭ In Kruskal’s algorithm, connected vertices form

equivalence classes (they are in the same tree)
➧ “Being connected” is the equivalence relation

✦ Initially, each vertex is in a class by itself

✦ As edges are added, more vertices become related
and the equivalence classes grow

✦ Until finally all the vertices are in a single equivalence class

13R. Rao, CSE 373

Union/Find in Kruskal’s Algorithm

✦ Representatives
➭ One vertex in each class can be the representative of that

class
➭ Vertices can be stored in up-tree data structures with roots

= class representatives
➧ This is what we used for Union-Find

✦ Detecting cycles is easy!
➭ For each edge (u,v) that you’re going to add

➧ If Find(u) == Find(v), then u and v are in the same class
(same tree) and therefore the edge will form a cycle

➧ Otherwise, we accept the edge and do Union(u,v)

14R. Rao, CSE 373

Kruskal’s Algorithm in C

Forest Kruskal_MST(Graph g, int n, double **costs) {
Forest T;
Queue q;
Edge e;
DisjSet S = InitializeSet(g);
T = ConsForest(g);
q = BuildHeap(g, costs);
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin(q); // e = (u,v)

} while ((Find(u,S) == Find(v,S)));
AddEdge(T, e);
Union(S, u, v);

}
return T; }

15R. Rao, CSE 373

Kruskal in action

Each vertex is its
own representative

All the vertices are in
single element trees

16R. Rao, CSE 373

Kruskal in action

The cheapest edge
is h-g

Add it to the forest,
joining h and g into a

2-element tree

17R. Rao, CSE 373

Add it to the forest,
joining h and g into a

2-element tree

Choose g as its
representative

Kruskal in action

18R. Rao, CSE 373

The next cheapest edge
is c-i

Add it to the forest,
joining c and i into a

2-element tree

Choose c as its
representative

Our forest now has 2 two-element trees
and 5 single vertex ones

Kruskal in action

19R. Rao, CSE 373

The next cheapest edge
is g-f

Add it to the forest,
joining g and f into a

3-element tree

Choose g as its
representative

Our forest now has 1 three-element tree,
1 two-element tree, and 4 single vertex ones

Kruskal in action

20R. Rao, CSE 373

The next cheapest edge
is a-b

Add it to the forest,
joining a and b into a

2-element tree

Choose b as its
representative

Our forest now has only 2 single vertex trees

Kruskal in action

21R. Rao, CSE 373

The next cheapest edge
is c-f

Add it to the forest:
Merge two 2-element

trees (Union the 2 sets)

Choose the rep of one
as its representative

Kruskal in action

22R. Rao, CSE 373

The next cheapest edge
is g-i

Find(g) is c

g-i forms a cycle!

Find(i) is also c

Ignore this edge

Kruskal in action

23R. Rao, CSE 373

The next cheapest edge
is c-d

Find(c) is c

c-d joins two
trees, so we add d

Find(d) is d

.. and keep c as the representative

Kruskal in action

24R. Rao, CSE 373

The next cheapest edge
is h-i

Find(h) is c

h-i forms a cycle,
so ignore it!

Find(i) is c

Kruskal in action

25R. Rao, CSE 373

The next cheapest edge
is a-h

Find(a) is b

a-h joins two trees,
and we add it

Find(h) is c

Kruskal in action

26R. Rao, CSE 373

The next cheapest edge
is b-c But b-c forms a cycle

That’s n-1 edges added – we now have a spanning tree!

So add d-e instead

Kruskal done!

27R. Rao, CSE 373

Kruskal’s Algorithm: Analysis

Forest Kruskal_MST(Graph g, int n, double **costs) {
Forest T;
Queue q;
Edge e;
DisjSet S = InitializeSet(g);
T = ConsForest(g);
q = BuildHeap(g, costs);
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin(q); // e = (u,v)

} while ((Find(u,S) == Find(v,S)));
AddEdge(T, e);
Union(S, u, v);

}
return T; }

O(|V|)

O(|E|)

Worst case:
DeleteMin |E|
edges, each
O(log |E|) ≈ O(1) amortized

Total time = O(|E| log |E|)

O(1)

28R. Rao, CSE 373

Kruskal versus Prim

✦ Worst case running time
➭ Prim: O(|V| log |V| + |E| log |V|)
➭ Kruskal: O(|E| log |E|) = O(|E| log |V|) since |E| = O(|V|2)

✦ Kruskal usually runs much faster than O(|E| log |V|) in
practice
➭ Not all edges need to be DeleteMin-ed typically
➭ The required |V|-1 edges are usually found quickly
➭ So, Kruskal tends to be faster than Prim

29R. Rao, CSE 373

It’s Puzzle Time!

Try drawing these figures without lifting your
pencil, drawing each line only once…
(begin: memories of 4th grade days…)

30R. Rao, CSE 373

It’s Puzzle Time!

Which of these can you draw without lifting your
pencil, drawing each line only once?
Can you start and end at the same point?
(end: memories of 4th grade days…)

31R. Rao, CSE 373

Historical Puzzle: Seven Bridges of Königsberg

KNEIPHOFF

PREGEL

Want to cross all bridges but…
Can cross each bridge only once (High toll to cross twice?!)

32R. Rao, CSE 373

A “Multigraph” for the Bridges of Königsberg

Find a path that
traverses every edge
exactly once

33R. Rao, CSE 373

Euler Circuits and Tours

✦ Euler tour: a path through a graph that visits each edge
exactly once

✦ Euler circuit: an Euler tour that starts and ends at the same
vertex

✦ Named after Leonhard Euler (1707-1783), who cracked this
problem and founded graph theory in 1736

✦ Some observations for undirected graphs:
➭ An Euler circuit is only possible if the graph is connected and

each vertex has even degree (= # of edges on the vertex) [Why?]
➭ An Euler tour is only possible if the graph is connected and

either all vertices have even degree or exactly two have odd
degree [Why?]

34R. Rao, CSE 373

Euler Circuit Problem

✦ Problem: Given an undirected graph G = (V,E), find an Euler
circuit in G

✦ Note: Can check if one exists in linear time (how?)

✦ Given that an Euler circuit exists, how do we construct an
Euler circuit for G?

✦ Hint: Think deep! We’ve discussed the answer in depth
before…

35R. Rao, CSE 373

Next Class:

Constructing Euler circuits

The vast gulf between Euler and Hamiltonian circuits

The dreaded world of NP hardness

To Do:

Programming Assignment #2 (Due in 6 days!!)

Finish reading chapter 9 (and have a great weekend!)

