CSE 373 Lecture 5: Lists, Stacks, and Queues

List Operations. Run time analysis

+ Wewill review:
< Morelists and applications
< Stack ADT and applications
< Queue ADT and applications
< Introduction to Trees

+ Covered in Chapter 3 of the text

R. Rao, CSE 373 Lecture 1

Operation Array-Based Pointer-Based
isEmpty 0O(1) O(1)
Insert O(N) O(1)
FindPrev O(1) O(N)
Delete O(N) O(N)
Find O(N) O(N)
FindNext 0O(1) 0O(1)
First O(1) O(1)
Kth 0O(1) O(N)
Last 0O(1) O(N)
Length O(1) O(N)

R. Rao, CSE 373 Lecture 1

Pointer-Based Linked List

node

node

P

To delete the node pointed to by P,
need a pointer to the previous node

R. Rao, CSE 373 Lecture 1

Doubly Linked Lists

+ FindPrev (and hence Delete) is O(N) because we cannot go to previous
node

+ Solution: Keep aback-pointer at each node
< Doubly Linked List

head prev prev prev

SECELEE

+ Advantages: Delete and FindPrev are O(1) operations

+ Disadvantages:
% More space used up (double the number of pointers at each node)
< More book-keeping for updating the two pointers at each node

R. Rao, CSE 373 Lecture 1

Circularly Linked Lists

+ Set the pointer of the last node to first node instead of NULL

+ Useful when you want to iterate through whole list starting

from any node
= No need to write special code to wrap around at the end

+ Circular doubly linked lists speed up both the Delete and

Last operations
= O(1) time for both instead of O(N)

R. Rao, CSE 373 Lecture 1

Applications of Linked Lists

+ Polynomia ADT: store and manipulate single variable

polynomials with non-negative exponents
> E.g. 10X3+4X2+7=10X3+4 X2+ 0 X +7 X°
< Datastructure: stores coefficients C; and exponentsi

+ Array Implementation: C[i] = C;
% Eg.C[3]=10,C[2] =4,C[1] =0,C[0] =7

+ ADT operations: Input polynomialsin arrays A and B
@ Addition: c[1] = ?
< Multiplication: ?

R. Rao, CSE 373 Lecture 1

Applications of Linked Lists

+ Polynomial ADT: store and manipulate single variable
polynomials with non-negative exponents
& E.g. 10X3+4X2+7=10X3+4X2+0X1+7 X0
< Datastructure: stores coefficients C; and exponentsi

+ Array Implementation: C[i] = C;
< Eg.C[3]=10,C[2] =4,C[1] =0,C[0] =7

+ ADT operations: Input polynomialsin arrays A and B
< Addition: [i] = A[i] + BI[il;
< Multiplication: C[1+3] = C[i+3j] + A[i1*B[j];

+ Problem with Array implementation: Sparse polynomials

< E.g. 10X30%0 + 4 X2+ 7 - Waste of space and time (C; are mostly 0s)
< Usesingly linked list, sorted in decreasing order of exponents

R. Rao, CSE 373 Lecture 1

Applications of Linked Lists

+ Radix Sort: Sorting integersin O(N) time

< Bucket sort: N integersin the range O to B-1
» Array Count has B elements (“buckets”), initialized to O
» Giveninput integer i, Count[i]++
» Time: O(B+N) (= O(N) if B is ©(N))

< Radix sort = bucket sort on digits of integers
» Bucket-sort from least significant to most significant digit
» Uselinked list to store numbers that are in same bucket
» Takes O(P(B+N)) time where P = number of digits

+ Multilists: Two (or more) lists combined into one

< E.g. Students and course registrations
< Two inter-linked circularly linked lists— one for studentsin course,

other for courses taken by student

R. Rao, CSE 373 Lecture 1

Stacks

+ Recall: Array implementation of Lists
< Insert and Delete take O(N) time (need to shift elements)

+ What if we avoid shifting by inserting and deleting only at
the end of the list?
< Both operations take O(1) time!

+ Stack: Same as list except that Insert/Delete allowed only at
the end of thelist (the top).
+ “LIFO" — Last in, First out N

+ Push: Insert element a top
+ Pop: Return and delete top element

R. Rao, CSE 373 Lecture 1 9

Stack ADT

+ Operations:
< void push(Stack S, ElementType E)
< ElementType pop(Stack S)
< ElementType top(Stack S)
< intisEmpty(Stack S)
< void MakeEmpty(Stack S)

+ Implementations:
< Pointer-based: Linked list with header, S->Next points to top of stack
< Array-based: Pre-allocate array, top is Stack[Topof Stack]

+ Runtime: All operations are O(1) (except MakeEmpty for
pointer implementation which takes O(N)).

R. Reo, CSE 373 Lecture 1 10

Applications of Stacks |

+ Compilers and Word Processors: Balancing symbols
< E.g. (i +5*(17—j/(6*k)) isnot balanced —“)" is missing

+ Balance Checker using Stacks:

< Make an empty stack and start reading symbols
< If input is an opening symbol, Push onto stack
< If input is aclosing symbol

» If stack is empty, report error

» Else, Pop the stack

Report error if popped symbol is not corresponding open symbol

< If EOF and stack is not empty, report error

+ Runtime: O(N) for N symbols

R. Rao, CSE 373 Lecture 1 11

Applications of Stacks 1

+ Handling function callsin programming languages
< Example: Two functions £ and g calling each other: need to store current
environment (input parameters, local variables, addressto return to, etc.)

function £(int x, int y) { x
int a; by y parameters
if (term cond) return ..; fort relurn acdress
a = R ol local variables
=
. oz parameters
return g(a); Stack [T retur address
} ,'2:"; B local variables
q
function g(int z) { x
int) Stack y parameters
P, i Lol return address
P = i @@= N B T Iocal variables
return f£(p,q); Pl
Current environment
R. Reo, CSE 373 Lecture 1 12

Queues

+ Consider alist ADT that inserts only at one end and deletes
only at other end — this resultsin a Queue

+ Queuesare “FIFO” —first in, first out
+ Instead of Push and Pop, we have Enqueue and Dequeue

+ Why not just use stacks?
< Items can get buried in stacks and do not appear at the top for along
time — not fair to old items.
< A queue ensures “fairness’ e.g. callerswaiting on a customer hotline

Queue ADT

+ Operations:
< void Enqueue(ElementType E, Queue Q)
< ElementType Dequeue(Queue Q)
< int IsEmpty(Queue Q)
< int MakeEmpty(Queue Q)
< ElementType Front(Queue Q)

+ Implementations:
< Pointer-based is natural —what pointers do you need to keep track of
for O(1) implementation of Enqueue and Dequeue?
< Array-based: can use List operatons Insert and Delete, but O(N) time
< How can you make array-based Enqueue and Dequeue O(1) time?

R. Reo, CSE 373 Lecture 1 13 R. Reo, CSE 373 Lecture 1 14
Queue ADT Applications of Queues
+ Operétions: + File servers: Users needing access to their files on a shared

< void Enqueue(ElementType E, Queue Q)
< ElementType Dequeue(Queue Q)

< int IsSEmpty(Queue Q)

< int MakeEmpty(Queue Q)

< ElementType Front(Queue Q)

+ Implementations:
< Pointer-based is natural —what pointers do you need to keep track of
for O(1) implementation of Enqueue and Dequeue?
< Array-based: can use List operatons Insert and Delete, but O(N) time
< How can you make array-based Enqueue and Dequeue O(1) time?
» UseFront and Rear indices: Rear incremented for Enqueue and
Front incremented for Dequeue

R. Rao, CSE 373 Lecture 1 15

file server machine are given access on aFIFO basis

+ Printer Queue: Jobs submitted to a printer are printed in
order of arrival

+ Phone calls made to customer service hotlines are usualy
placed in aqueue

+ Expected wait-time of real-life queues such as customers on
phone lines or ticket counters may be too hard to solve
analytically - use queue ADT for simulation

R. Rao, CSE 373 Lecture 1 16

Introduction to Trees

+ Basic terminology:

* root

* leaves

* parent

« children, siblings
« path
 ancestors

« descendants
« path length
« depth / level
« height

* subtrees

R. Rao, CSE 373 Lecture 1

depth=0, height =2

depth = 2, height=0

17

Next class:
Gardening 101: Algorithms for growing, examining, and
pruning trees (on your computer)

Todo:
Finish Homework no. 1 (due Friday)
Finish reading Chapter 3
Start reading Chapter 4

R. Rao, CSE 373 Lecture 1

18

