
1R. Rao, CSE 373 Lecture 1

CSE 373 Lecture 5: Lists, Stacks, and Queues

✦ We will review:
➭More lists and applications
➭ Stack ADT and applications
➭ Queue ADT and applications
➭ Introduction to Trees

✦ Covered in Chapter 3 of the text

2R. Rao, CSE 373 Lecture 1

List Operations: Run time analysis

Pointer-BasedArray-BasedOperation

O(N)O(1)Length

O(N)O(1)Last

O(N)O(1)Kth

O(1)O(1)First

O(1)O(1)FindNext

O(N)O(N)Find

O(N)O(N)Delete

O(N)O(1)FindPrev

O(1)O(N)Insert

O(1)O(1)isEmpty

3R. Rao, CSE 373 Lecture 1

Pointer-Based Linked List

Value NULL

pL

node
Value Next

node

P

To delete the node pointed to by P,
need a pointer to the previous node

4R. Rao, CSE 373 Lecture 1

Doubly Linked Lists

✦ FindPrev (and hence Delete) is O(N) because we cannot go to previous
node

✦ Solution: Keep a back-pointer at each node
➭ Doubly Linked List

✦ Advantages: Delete and FindPrev are O(1) operations

✦ Disadvantages:
➭ More space used up (double the number of pointers at each node)
➭ More book-keeping for updating the two pointers at each node

head prev prev prev

5R. Rao, CSE 373 Lecture 1

Circularly Linked Lists

✦ Set the pointer of the last node to first node instead of NULL

✦ Useful when you want to iterate through whole list starting
from any node
➭ No need to write special code to wrap around at the end

✦ Circular doubly linked lists speed up both the Delete and
Last operations
➭ O(1) time for both instead of O(N)

6R. Rao, CSE 373 Lecture 1

Applications of Linked Lists

✦ Polynomial ADT: store and manipulate single variable
polynomials with non-negative exponents
➭ E.g. 10X3 + 4X2 + 7 = 10X3 + 4 X2 + 0 X1 + 7 X0

➭ Data structure: stores coefficients Ci and exponents i

✦ Array Implementation: C[i] = Ci
➭ E.g. C[3] = 10, C[2] = 4, C[1] = 0, C[0] = 7

✦ ADT operations: Input polynomials in arrays A and B
➭ Addition: C[i] = ?
➭ Multiplication: ?

7R. Rao, CSE 373 Lecture 1

Applications of Linked Lists

✦ Polynomial ADT: store and manipulate single variable
polynomials with non-negative exponents
➭ E.g. 10X3 + 4X2 + 7 = 10X3 + 4 X2 + 0 X1 + 7 X0

➭ Data structure: stores coefficients Ci and exponents i

✦ Array Implementation: C[i] = Ci
➭ E.g. C[3] = 10, C[2] = 4, C[1] = 0, C[0] = 7

✦ ADT operations: Input polynomials in arrays A and B
➭ Addition: C[i] = A[i] + B[i];
➭ Multiplication: C[i+j] = C[i+j] + A[i]*B[j];

✦ Problem with Array implementation: Sparse polynomials
➭ E.g. 10X3000 + 4 X2+ 7 ! Waste of space and time (Ci are mostly 0s)
➭ Use singly linked list, sorted in decreasing order of exponents

8R. Rao, CSE 373 Lecture 1

Applications of Linked Lists

✦ Radix Sort: Sorting integers in O(N) time
➭ Bucket sort: N integers in the range 0 to B-1

➧ Array Count has B elements (“buckets”), initialized to 0
➧ Given input integer i, Count[i]++
➧ Time: O(B+N) (= O(N) if B is Θ(N))

➭ Radix sort = bucket sort on digits of integers
➧ Bucket-sort from least significant to most significant digit
➧ Use linked list to store numbers that are in same bucket
➧ Takes O(P(B+N)) time where P = number of digits

✦ Multilists: Two (or more) lists combined into one
➭ E.g. Students and course registrations
➭ Two inter-linked circularly linked lists – one for students in course,

other for courses taken by student

9R. Rao, CSE 373 Lecture 1

Stacks

✦ Recall: Array implementation of Lists
➭ Insert and Delete take O(N) time (need to shift elements)

✦ What if we avoid shifting by inserting and deleting only at
the end of the list?
➭ Both operations take O(1) time!

✦ Stack: Same as list except that Insert/Delete allowed only at
the end of the list (the top).

✦ “LIFO” – Last in, First out

✦ Push: Insert element at top

✦ Pop: Return and delete top element

10R. Rao, CSE 373 Lecture 1

Stack ADT

✦ Operations:
➭ void push(Stack S, ElementType E)
➭ ElementType pop(Stack S)
➭ ElementType top(Stack S)
➭ int isEmpty(Stack S)
➭ void MakeEmpty(Stack S)

✦ Implementations:
➭ Pointer-based: Linked list with header, S->Next points to top of stack
➭ Array-based: Pre-allocate array, top is Stack[TopofStack]

✦ Run time: All operations are O(1) (except MakeEmpty for
pointer implementation which takes Θ(N)).

11R. Rao, CSE 373 Lecture 1

Applications of Stacks I

✦ Compilers and Word Processors: Balancing symbols
➭ E.g. (i + 5*(17 – j/(6*k)) is not balanced – “)” is missing

✦ Balance Checker using Stacks:
➭ Make an empty stack and start reading symbols
➭ If input is an opening symbol, Push onto stack
➭ If input is a closing symbol

➧ If stack is empty, report error
➧ Else, Pop the stack

Report error if popped symbol is not corresponding open symbol
➭ If EOF and stack is not empty, report error

✦ Run time: O(N) for N symbols

12R. Rao, CSE 373 Lecture 1

Applications of Stacks II

✦ Handling function calls in programming languages
➭ Example: Two functions f and g calling each other: need to store current

environment (input parameters, local variables, address to return to, etc.)

function f(int x, int y) {
int a;
if (term_cond) return …;
a = ….;
return g(a);
}

function g(int z) {
int p, q;
p = …. ; q = …. ;
return f(p,q);
} Current environment

13R. Rao, CSE 373 Lecture 1

Queues

✦ Consider a list ADT that inserts only at one end and deletes
only at other end – this results in a Queue

✦ Queues are “FIFO” – first in, first out

✦ Instead of Push and Pop, we have Enqueue and Dequeue

✦ Why not just use stacks?
➭ Items can get buried in stacks and do not appear at the top for a long

time – not fair to old items.
➭ A queue ensures “fairness” e.g. callers waiting on a customer hotline

14R. Rao, CSE 373 Lecture 1

Queue ADT

✦ Operations:
➭ void Enqueue(ElementType E, Queue Q)
➭ ElementType Dequeue(Queue Q)
➭ int IsEmpty(Queue Q)
➭ int MakeEmpty(Queue Q)
➭ ElementType Front(Queue Q)

✦ Implementations:
➭ Pointer-based is natural – what pointers do you need to keep track of

for O(1) implementation of Enqueue and Dequeue?
➭ Array-based: can use List operatons Insert and Delete, but O(N) time
➭ How can you make array-based Enqueue and Dequeue O(1) time?

15R. Rao, CSE 373 Lecture 1

Queue ADT

✦ Operations:
➭ void Enqueue(ElementType E, Queue Q)
➭ ElementType Dequeue(Queue Q)
➭ int IsEmpty(Queue Q)
➭ int MakeEmpty(Queue Q)
➭ ElementType Front(Queue Q)

✦ Implementations:
➭ Pointer-based is natural – what pointers do you need to keep track of

for O(1) implementation of Enqueue and Dequeue?
➭ Array-based: can use List operatons Insert and Delete, but O(N) time
➭ How can you make array-based Enqueue and Dequeue O(1) time?

➧ Use Front and Rear indices: Rear incremented for Enqueue and
Front incremented for Dequeue

16R. Rao, CSE 373 Lecture 1

Applications of Queues

✦ File servers: Users needing access to their files on a shared
file server machine are given access on a FIFO basis

✦ Printer Queue: Jobs submitted to a printer are printed in
order of arrival

✦ Phone calls made to customer service hotlines are usually
placed in a queue

✦ Expected wait-time of real-life queues such as customers on
phone lines or ticket counters may be too hard to solve
analytically ! use queue ADT for simulation

17R. Rao, CSE 373 Lecture 1

Introduction to Trees

✦ Basic terminology:

• root
• leaves
• parent
• children, siblings
• path
• ancestors
• descendants
• path length
• depth / level
• height
• subtrees

depth=0, height = 2

depth = 2, height=0

A

B C D

E F

18R. Rao, CSE 373 Lecture 1

Next class:

Gardening 101: Algorithms for growing, examining, and

pruning trees (on your computer)

To do:

Finish Homework no. 1 (due Friday)

Finish reading Chapter 3

Start reading Chapter 4

