
1R. Rao, CSE 373 Lecture 1

CSE 373 Lecture 9: B-Trees and Binary Heaps

✦ Today’s Topics:
➭More on B-Trees

➧ Insert/Delete Examples and Run Time Analysis
➭ Introduction to Heaps and Priority Queues

➧ Binary Heaps

✦ Covered in Chapters 4 and 6 in the text

2R. Rao, CSE 373 Lecture 1

B-Trees are multi-way search trees commonly used in
database systems or other applications where data is stored
externally on disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:

1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between M/2

and M children.
3. All leaves are at the same depth.

All data records are stored at the leaves.
Leaves store between M/2 and M data records.

B-Trees

3R. Rao, CSE 373 Lecture 1

B-Tree Details

Each internal node of a B-tree has:
➭ Between M/2 and M children.
➭ up to M-1 keys k1 < k2 < ... < kM-1

Keys are ordered so that:
k1 < k2 < ... < kM-1

kM-1.ki-1 kik1

4R. Rao, CSE 373 Lecture 1

Properties of B-Trees

Children of each internal node are "between" the items in that node.
Suppose subtree Ti is the ith child of the node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 ≤ Ti < ki

ki-1 is the smallest key in Ti

All keys in first subtree T1 < k1

All keys in last subtree TM ≥ kM-1

k1

TTii

.kki-1 kkii

TTMTT11

kkM-1

.

5R. Rao, CSE 373 Lecture 1

Example: Searching in B-trees

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

✦ B-tree of order 3: also known as 2-3 tree (2 to 3 children)

✦ Examples: Search for 9, 14, 12

✦ Note: If leaf nodes are connected as a Linked List, B-tree is
called a B+ tree – Allows sorted list to be accessed easily

- means empty slot

6R. Rao, CSE 373 Lecture 1

Inserting and Deleting Items in B-Trees

✦ Insert X: Do a Find on X and find appropriate leaf node
➭ If leaf node is not full, fill in empty slot with X

➧ E.g. Insert 5
➭ If leaf node is full, split leaf node and adjust parents up to root node

➧ E.g. Insert 9

✦ Delete X: Do a Find on X and delete value from leaf node
➭ May have to combine leaf nodes and adjust parents up to root node

➧ E.g. Delete 17 (after Insert 9)

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

7R. Rao, CSE 373 Lecture 1

Run Time Analysis of B-Tree Operations

✦ For a B-Tree of order M
➭ Each internal node has up to M-1 keys to search
➭ Each internal node has between M/2 and M children
➭ Depth of B-Tree storing N items is O(log M/2 N)

✦ Find: Run time is:
➭ O(log M) to binary search which branch to take at each node
➭ Total time to find an item is O(depth*log M) = O(log N)

8R. Rao, CSE 373 Lecture 1

Run Time Analysis of B-Tree Operations

✦ For a B-Tree of order M
➭ Depth of B-Tree storing N items is O(log M/2 N)

✦ Find: Run time is:
➭ Total time to find an item is O(depth*log M) = O(log N)

✦ Insert and Delete: Run time is:
➭ O(M) to handle splitting or combining keys in nodes
➭ Total time is O(depth*M) = O((log N/log M/2)*M)

= O((M/log M)*log N)

✦ Tree in internal memory ! M = 3 or 4

✦ Tree on Disk ! M = 32 to 256. Interior and leaf nodes fit on
1 disk block.
➭ Depth = 2 or 3 ! allows very fast access to data in database systems.

9R. Rao, CSE 373 Lecture 1

Summary of Search Trees

✦ Problem with Search Trees: Must keep tree balanced to allow

fast access to stored items

✦ AVL trees: Insert/Delete operations keep tree balanced

✦ Splay trees: Repeated Find operations produce balanced trees

✦ Multi-way search trees (e.g. B-Trees): More than two children

per node allows shallow trees; all leaves are at the same depth

keeping tree balanced at all times

10R. Rao, CSE 373 Lecture 1

A New Problem…

✦ Instead of finding any item (as in a search tree), suppose we
want to find only the smallest (highest priority) item quickly.
Examples:
➭ Operating system needs to schedule jobs according to priority
➭ Doctors in ER take patients according to severity of injuries
➭ Event simulation (bank customers arriving and departing, ordered

according to when the event happened)

✦ We want an ADT that can efficiently perform:
➭ FindMin (or DeleteMin)
➭ Insert

✦ What if we use…
➭ Lists: If sorted, what is the run time for Insert/DeleteMin? Unsorted?
➭ Binary Search Trees: What is the run time for Insert/DeleteMin?

11R. Rao, CSE 373 Lecture 1

Using the Data Structures we know…

✦ Suppose we have N items.

✦ Lists
➭ If sorted: DeleteMin is O(1) but Insert is O(N)
➭ If not sorted: Insert is O(1) but DeleteMin is O(N)

✦ Binary Search Trees (BSTs)
➭ Insert is O(log N) and DeleteMin is O(log N)

✦ BSTs look good but…
➭ BSTs are designed to be efficient for Find, not just FindMin
➭ We only need FindMin/DeleteMin

✦ We can do better than BSTs!
➭ O(1) FindMin and O(log N) Insert
➭ How?

12R. Rao, CSE 373 Lecture 1

Heaps

✦ A binary heap is a binary tree that is:
1. Complete: the tree is completely filled except possibly the bottom

level, which is filled from left to right
2. Satisfies the heap order property: every node is smaller than (or

equal to) its children

✦ Therefore, the root node is always the smallest in a heap

2

4 6

7 5

-1

0 1

0

1

2 6

3 4 5

Which of
these is not
a heap?

13R. Rao, CSE 373 Lecture 1

Next Class:

More Heaps

To Do:

Read Chapter 6

Homework # 2 due on Monday

Have a great weekend!

