
1

Introduction

CSE 373
Data Structures

Lecture 1

9/30/02 Introduction - Lecture 1 2

Administrative

• Instructor
› Richard Ladner

› ladner@cs.washington.edu

• Class info is on the web site
› http://www.cs.washington.edu/373
› also known as

• http://www.cs.washington.edu/education/courses/373/02au/

9/30/02 Introduction - Lecture 1 3

Office Hours

• Richard Ladner – 311 Sieg Hall
› W 2-3, Th 11 - 12

• Jennifer Price – 226b Sieg Hall
› TTh 12:30 – 1:30

• David Richardson – 226b Sieg Hall
› MW 11 - 12

9/30/02 Introduction - Lecture 1 4

CSE 373 E-mail List

• Subscribe by going to the class web
page.

• E-mail list is used for posting
announcements by instructor and TAs.

9/30/02 Introduction - Lecture 1 5

Computer Lab

• Math Sciences Computer Center
› http://www.ms.washington.edu/

• Project can be done in C++ or Java.
› I recommend Java because the text is in

Java

9/30/02 Introduction - Lecture 1 6

Assignments, Projects, Exams

• Assignments 25%
› Due on Fridays

• Projects 25%
› Approximately 4 programming projects

• Midterm 20%
› Friday, November 8, 2002

• Final 30%
› Wednesday, December 18, 2002,

8:30 – 10:20

2

9/30/02 Introduction - Lecture 1 7

Class Overview

• Introduction to many of the basic data structures
used in computer software
› Understand the data structures
› Analyze the algorithms that use them
› Know when to apply them

• Practice design and analysis of data structures.
• Practice using these data structures by writing

programs.
• Data structures are the plumbing and wiring of

programs.
9/30/02 Introduction - Lecture 1 8

Goal

• You will understand
› what the tools are for storing and

processing common data types
› which tools are appropriate for which need

• So that you will be able to
› make good design choices as a developer,

project manager, or system customer

9/30/02 Introduction - Lecture 1 9

Course Topics

• Introduction to Algorithm Analysis
• Lists, Stacks, Queues
• Search Algorithms and Trees
• Hashing and Heaps
• Sorting
• Disjoint Sets
• Graph Algorithms

9/30/02 Introduction - Lecture 1 10

Reading

• Reading
› Chapters 1 and 2, Data Structures and Algorithm

Analysis in Java, by Weiss

9/30/02 Introduction - Lecture 1 11

Data Structures: What?

• Need to organize program data according to
problem being solved

• Abstract Data Type (ADT) - A data object and a
set of operations for manipulating it
› List ADT with operations i nser t and del et e

› Stack ADT with operations push and pop

• Note similarity to Java classes
› private data structure and public methods

9/30/02 Introduction - Lecture 1 12

Data Structures: Why?

• Program design depends crucially on how
data is structured for use by the program
› Implementation of some operations may become

easier or harder

› Speed of program may dramatically decrease or
increase

› Memory used may increase or decrease
› Debugging may be become easier or harder

3

9/30/02 Introduction - Lecture 1 13

Terminology
• Abstract Data Type (ADT)

› Mathematical description of an object with set of
operations on the object. Useful building block.

• Algorithm
› A high level, language independent, description of

a step-by-step process

• Data structure
› A specific family of algorithms for implementing an

abstract data type.

• Implementation of data structure
› A specific implementation in a specific language

9/30/02 Introduction - Lecture 1 14

Algorithm Analysis: Why?

• Correctness:
› Does the algorithm do what is intended.

• Performance:
› What is the running time of the algorithm.
› How much storage does it consume.

• Different algorithms may correctly solve
a given task
› Which should I use?

9/30/02 Introduction - Lecture 1 15

Iterative Algorithm for Sum

• Find the sum of the first numintegers
stored in an array v .

sum(v [] : i nt eger ar r ay , num: i nt eger) : i nt eger {

t emp_sum: i nt eger ;

t emp_sum : = 0;

f or i = 0 t o num – 1 do

t emp_sum : = v [i] + t emp_sum;

r et ur n t emp_sum;

}

Note the use of pseudocode

9/30/02 Introduction - Lecture 1 16

Programming via Recursion

• Write a recursive function to find the
sum of the first numintegers stored in
array v .

sum (v[] : i nt eger ar r ay, num: i nt eger) : i nt eger {

i f num = 0 t hen

r et ur n 0

el se

r et ur n v[num- 1] + sum(v, num- 1) ;

}

9/30/02 Introduction - Lecture 1 17

Pseudocode

• In the lectures I will be presenting algorithms
in pseudocode.
› This is very common in the computer science

literature

› Pseudocode is usually easily translated to real
code.

› This is what I’m used to.

• Pseudocode should also be used for
homework

9/30/02 Introduction - Lecture 1 18

Proof by Induction

• Basis Step: The algorithm is correct for
a base case or two by inspection.

• Inductive Hypothesis (n=k): Assume
that the algorithm works correctly for the
first k cases, for any k.

• Inductive Step (n=k+1): Given the
hypothesis above, show that the k+1
case will be calculated correctly.

4

9/30/02 Introduction - Lecture 1 19

Program Correctness by
Induction

• Basis Step: sum(v,0) = 0. üüüü
• Inductive Hypothesis (n=k): Assume

sum(v,k) correctly returns sum of first k
elements of v, i.e. v[0] +v[1] +…+v[k- 1]

• Inductive Step (n=k+1): sum(v,n)
returns v[k] +sum(v, k) which is the sum
of first k+1 elements of v. üüüü

9/30/02 Introduction - Lecture 1 20

Algorithms vs Programs

• Proving correctness of an algorithm is very
important
› a well designed algorithm is guaranteed to work

correctly and its performance can be estimated

• Proving correctness of a program (an
implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap

between mathematical algorithms and programs

