Fundamentals

CSE 373
Data Structures
Lecture 5

Mathematical Background

e Today, we will review:
> Logs and exponents
> Series
> Recursion
> Motivation for Algorithm Analysis

10/9/02 Fundamentals - Lecture 5

Powers of 2

 Many of the numbers we use will be powers
of 2

* Binary numbers (base 2) are easily
represented In digital computers
> each"bit"isaOoral
> 20=1, 21=2, 22=4, 23=8, 24=16, 28=256, ...
> an n-bit wide field can hold 2" positive integers:
e 0<k<2n1

10/9/02 Fundamentals - Lecture 5 3

Unsigned binary numbers

« Each bit position represents a power of 2

* For unsigned numbers in a fixed width field
> the minimum value is 0

> the maximum value is 2"-1, where n is the number
of bits in the field

* Fixed field widths determine many limits
> 5 bits = 32 possible values (2° = 32)
> 10 bits = 1024 possible values (219 = 1024)

10/9/02 Fundamentals - Lecture 5 4

Binary and Decimal

10
15
16
31

127
255

Fundamentals - Lecture 5

10/9/02

Logs and exponents

» Definition: log, X =y means x = 2V

> the log of X, base 2, is the value y that gives X
= 2V

> 8 =23, s0l0g,8 =3
> 65536= 216, s0 10g,65536 = 16

* Notice that log,x tells you how many bits
are needed to hold x values
> 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255
> 109,256 = 8

10/9/02 Fundamentals - Lecture 5 6

y = 2.7
plot(x,y,'r")
hol d on
plot(y,x,'g")
plot(y,y,"b")

2* and log,x

y = 2.7
plot(x,y,'r")
hol d on

plot(y,x,'g")
plot(y,y,"'b")

2* and log,x

Floor and Celiling

_XJ Floor function: the largest integer < X

2.7]=2 |-27|]=-3 |2]=2

|_X_‘ Ceiling function: the smallest integer > X

23]=3 [-23]=—2 [2]=2

10/9/02 Fundamentals - Lecture 5

Facts about Floor and Celling

1. X-1<|X]|<X
2. X<[X|<X+1
3. |[n/2|+[n/2|=n ifnisaninteger

10/9/02 Fundamentals - Lecture 5 10

Example: log,x and tree depth

+ 7 items in a binary tree, 3 = |log,7]+1 levels

4

.

1 3 S /

10/9/02 Fundamentals - Lecture 5 11

Properties of logs (of the
mathematical kind)

 We will assume logs to base 2 unless
specified otherwise

 logAB =Ilog A +logB
> A=2109,A and B=2/09,B
> AB = 2!09,A ¢ 2l0g,B = 2log,A+log,B

> so log,AB = log,A + log,B

> note: log AB # log A¢log B

10/9/02 Fundamentals - Lecture 5 12

Other log properties

 logA/B=logA-logB

* log (A®) =B log A

* loglog X<log X< Xforall X>0
> log log X =Y means 2% =X

> log X grows slower than X
o called a “sub-linear” function

10/9/02 Fundamentals - Lecture 5

13

Alogisalogis alog

 Any base x log Is equivalent to base 2 log
within a constant factor

log,B =log,B
B = 2Iong XlogXB - B
X = 2Iogzx (2|092X)|09XB _ 2Iong

2Iogzx log,B _ 2Iong

log,x log,B =log.,B
log.,B

log, X
10/9/02 Fundamentals - Lecture 5 14

log,B =

Arithmetic Series

N
e S(N)=1+2+...+N=>i

e The sum s
> S(1) =1
> S(2)=1+2=3

> S(3) = 1+2+3 =

. ZN:' N(N+1)

=1

10/9/02

=1

6

Why is this formula useful?

Fundamentals - Lecture 5

15

Algorithm Analysis

e Consider the following program
segment:

x: = 0;

for i =1 to N do
for) =1to i do
X = X + 1;

e \WWhat is the value of x at the end?

10/9/02 Fundamentals - Lecture 5

16

Analyzing the Loop

e Total number of times x Is iIncremented
IS executed =

N
142+3+...=) i= N(N;l)
i=1

e Congratulations - You've just analyzed
your first program!

> Running time of the program is proportional
to N(N+1)/2 for all N

> O(N?)

10/9/02 Fundamentals - Lecture 5

17

Analyzing Mergesort

Mergesort(p : node pointer) : node pointer {
Case {

p =null : return p; //no elenents
p.next = null : return p; //one el enent
el se
d : duo pointer; // duo has two fields first, second
d:= Split(p);
return Merge(Mergesort(d.first), Mergesort(d. second));
}
} T(n)Is the time to sort nitems.

T(0),T(1)<c
T(N) <T(n/2)+T(n/2))+dn

10/9/02 Fundamentals - Lecture 5 18

Mergesort Analysis
Upper Bound

T(n)<2T(n/2)+dn Assumingnis a power of 2

10/9/02

<2(2T(n/4)+dn/2) + dn
=4T(n/4)+2dn
<4(2T(n/8)+dn/4) +2dn
=8T(n/8) +3dn

< 2“T(n/2*)+kdn
=nT(1)+kdn ifn=2
<cn+dnlog,n
=0O(nlogn)

Fundamentals - Lecture 5

19

Recursion Used Badly

» Classic example: Fibonacci numbers F,

0,1,1,2, 3,58, 13,21, . Dooco 2=
Bl

R FO:O’Flzl(Base CaSeS) £
> Rest are sum of preceding two

Leonardo Pisano

F.=F. ., +F_ (n>1) Fibonacci (1170-1250)

10/9/02 Fundamentals - Lecture 5 20

Recursive Procedure for
Fibonacci Numbers

fib(n : integer): integer {
Case {
n <0 : return O;
n =1: return 1,
else : return fib(n-1) + fib(n-2);

}
}

« Easy to write: looks like the definition of F,
e But, can you spot the big problem?

10/9/02 Fundamentals - Lecture 5 21

Recursive Calls of Fibonacci

Procedure
N ~ D
N-1 @B\
T NN ")
s @\ dhdp

- DO® @

 Re-computes fib(N-1) multiple times!

10/9/02 Fundamentals - Lecture 5 22

Fibonacci Analysis
Lower Bound

10/9/02

T(n) s the time to compute fib(n).
T(0),T(1)>1
TN)>T(n-1)+T(n-2)

It can be shown by induction that T(n) > ¢ "2

where
B 1++/5
2

¢ ~1.62

Fundamentals - Lecture 5

23

Iterative Algorithm for
Fibonacci Numbers

fibiter(n : integer): integer {

fib0O, fibl, fibresult, i : integer;
fibO :=0; fibl := 1;
case {__
n <0 : fibresult := 0;
n=1: fibresult := 1;
el se :
for i =2 to n do {
fibresult := fIbO + fibl;
fibO := fi b
fibl := fi bresult
}
}
return fibresult;
}
10/9/02 Fundamentals - Lecture 5

24

Recursion Summary

« Recursion may simplify programming, but
beware of generating large numbers of
calls

> Function calls can be expensive in terms of
time and space

e Be sure to get the base case(s) correct!

« Each step must get you closer to the base
case

10/9/02 Fundamentals - Lecture 5

25

Motivation for Algorithm
Analysis

e Suppose you are
given two algorithms
A and B for solving a
problem

e The running times
TA(N) and Tg(N) of A
and B as a function of
Input size N are given

Run Time

Input Size N
Which is better?

10/9/02 Fundamentals - Lecture 5 26

More Motivation

* For

5000

large N, the running time of A and B

4500

4000

3500

3000

2500

Run Time

2000

1500

1000

500F

10/9/02

Now which
TA(N) = 50N algorithm would
| you choose?

— NI2
Tg(N) =N
1IO 2I0 3I0 4l0 5IO 6I0 7'.0 8I0 QIO 100
Input Size N
Fundamentals - Lecture 5 27

Asymptotic Behavior

 The “asymptotic”’ performance as N — oo,
regardless of what happens for small input
sizes N, Is generally most important

e Performance for small input sizes may

matter in practice, If you are sure that small
N will be common forever

 We will compare algorithms based on how
they scale for large values of N

10/9/02 Fundamentals - Lecture 5

28

Order Notation

 Mainly used to express upper bounds on time
of algorithms. “n” Is the size of the input.

e T(n) = O(f(n)) If there are constants c and n,
such that T(n) < c f(n) for all n > n,,.
> 10000n + 10 nlog, n = O(n log n)
> .00001 n? = O(n log n)

e Order notation ignores constant factors and
low order terms.

10/9/02 Fundamentals - Lecture 5 29

Why Order Notation

 Program performance may vary by a
constant factor depending on the
compiler and the computer used.

e In asymptotic performance (n —»x) the
low order terms are negligible.

10/9/02 Fundamentals - Lecture 5 30

Some Basic Time Bounds

e Logarithmic time is O(log n)

e Linear time is O(n)

e Quadratic time is 0(n?)

e Cubic time is O(n3)

* Polynomial time is O(nk) for some k.

 Exponential time is O(c") for some ¢ >
1.

10/9/02 Fundamentals - Lecture 5 31

Kinds of Analysis

« Asymptotic — uses order notation, ignores constant
factors and low order terms.

e Upper bound vs. lower bound

« Worst case — time bound valid for all inputs of length
n.

« Average case — time bound valid on average —
requires a distribution of inputs.

« Amortized — worst case time averaged over a
sequence of operations.

e QOthers — best case, common case, cache miss

10/9/02 Fundamentals - Lecture 5 32

