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Trees 

CSE 373
Data Structures

Lecture 7
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Readings and References

• Reading 
› Chapter 4.1-4.3, 
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Why Do We Need Trees?

• Lists, Stacks, and Queues are linear 
relationships

• Information often contains hierarchical 
relationships 
› File directories or folders on your computer
› Moves in a game
› Employee hierarchies in organizations

• Can build a tree to support fast searching
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Tree Jargon

• root
• nodes and edges
• leaves

• parent, children, siblings
• ancestors,  descendants

• subtrees

• path, path length
• height, depth
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More Tree Jargon
• Length of a path = number 

of edges
• Depth of a node N = length 

of path from root to N
• Height of node N = length of 

longest path from N to a leaf
• Depth of tree = depth of 

deepest node
• Height of tree = height of 

root
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depth=0, 
height = 2

depth = 2, 
height=0
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Definition and Tree Trivia

• A tree is a set of nodes 
• that is an empty set of nodes, or 
• has one node called the root from which 

zero or more trees  (subtrees) descend
• A tree with N nodes always has N-1 

edges
• Two nodes in a tree have at most one 

path between them
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Paths

• Can a non-zero path from node N reach 
node N again?

• No. Trees can never have cycles (loops)

• Does depth of nodes in a non-zero path 
increase or decrease?
› Depth always increases in a non-zero path
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Implementation of Trees

• One possible pointer-based Implementation
› tree nodes with value and a pointer to each child

› but how many pointers should we allocate space for?

• A more flexible pointer-based implementation
› 1st Child / Next Sibling List Representation

› Each node has 2 pointers: one to its first child and one to 
next sibling

› Can handle arbitrary number of children
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Arbitrary Branching
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Data

FirstChild           Sibling
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Example Arithmetic Expression:

A + (B * (C / D) )

How would you express this as a tree?

Application: Arithmetic 
Expression Trees
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Example Arithmetic Expression:

A + (B * (C / D) )

Tree for the above expression:

Application: Arithmetic 
Expression Trees

• Used in most compilers
• No parenthesis need – use tree structure
• Can speed up calculations e.g. replace

/ node with C/D if C and D are known
• Calculate by traversing tree (how?) 

+

A *

B /

C D
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Traversing Trees

• Preorder: Node, then Children
recursively
+ A * B / C D

• Inorder: Left child recursively, Node, 
Right child recursively (Binary Trees)
A + B * C / D 

• Postorder: Children recursively, then Node
A B C D / * +

+

A *

B /

C D
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Binary Trees

• Every node has at most two children
› Most popular tree in computer science

› Easy to implement, fast in operation

• Given N nodes, what is the minimum depth of a 
binary tree?
› At depth d, you can have N = 2d to 2d+1-1 nodes 

� �Nlogd  implies   12N2 2
1dd ���� �
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Minimum depth vs node count

• At depth d, you can have N = 2d to 2d+1-1 
nodes 

• minimum depth d is �(log N)*
1

2 3

6 74 5

T(n) = �(f(n)) means
T(n) = O(f(n)) and  f(n) = O(T(n))

d=2
N=22 to 23-1 (ie, 4 to 7 nodes)
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Maximum depth vs node 
count

• What is the maximum depth of a binary 
tree?
› Degenerate case: Tree is a linked list!
› Maximum depth = N-1

• Goal: Would like to keep depth at 
around log N to get better performance 
than linked list for operations like Find
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A degenerate tree
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A linked list with high overhead
and few redeeming characteristics
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Binary Search Trees

• Binary search trees are binary trees in 
which 

› all values in the node’s left subtree 
are less than node value

› all values in the node’s right subtree 
are greater than node value

• Operations:
› Find, FindMin, FindMax, Insert, Delete
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Operations on Binary Search 
Trees

• How would you implement these?
› Recursive definition of binary 

search trees allows recursive routines
› Call by reference helps too

• FindMin
• FindMax
• Find
• Insert
• Delete

9

5

10

96 99

94

97



4

10/14/02 Trees - Lecture 7 19

Binary SearchTree
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Find

Fi nd( T :  t r ee poi nt er ,  x :  el ement ) :  t r ee poi nt er  {
case {

T = nul l  :  r et ur n nul l ;      
T. dat a = x :  r et ur n T;
T. dat a > x :  r et ur n Fi nd( T. l ef t , x) ;
T. dat a < x :  r et ur n Fi nd( T. r i ght , x)

}
}
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FindMin

• Class Participation
• Design recursive FindMin operation that 

returns the smallest element in a binary 
search tree.
› Fi ndMi n( T :  t r ee poi nt er )  :  t r ee poi nt er  {

/ /  pr econdi t i on:  T i s  not  nul l  / /
???
}
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Insert Operation

• Insert(T: tree, X: element) 

› Do a “Find” operation for X
› If X is found à update 

duplicates counter
› Else, “Find” stops at a 

NULL pointer
› Insert Node with X there

• Example: Insert 95
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Insert 95
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Insert Done Very Elegantly

I nser t ( T :  r ef er ence t r ee poi nt er ,  x :  el ement )  :  i nt eger  {
i f  T = nul l  t hen

T : = new t r ee;  T. dat a : = x;  r et ur n 1
case {

T. dat a = x :  r et ur n 0;
T. dat a > x :  r et ur n I nser t ( T. l ef t ,  x ) ;
T. dat a < x :  r et ur n I nser t ( T. r i ght ,  x) ;

}
}

Advantage of reference parameter is that the call has
the original pointer not a copy.
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Call by Value vs 
Call by Reference

• Call by value
› Copy of parameter is used

• Call by reference
› Actual parameter is used

p pF(p)

used inside call of F
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Delete Operation

• Delete is a bit trickier…Why?
• Suppose you want to delete 10
• Strategy:

› Find 10

› Delete the node containing 10

• Problem: When you delete a node,
what do you replace it by?
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Delete Operation
• Problem: When you delete a node,

what do you replace it by?
• Solution:

› If it has no children, by NULL
› If it has 1 child, by that child
› If it has 2 children, by the node with

the smallest value in its right subtree
(the successor of the node)
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Delete “5” - No children

Find 5 node

Then Free
the 5 node and 
NULL the 
pointer to it
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Delete “24” - One child

Find 24 node

Then Free
the 24 node and 
replace the 
pointer to it with
a pointer to its
child
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Delete “10” - two children
Find 10,
Copy the smallest
value in
right subtree
into the node

Then recursively
Delete node with 
smallest value
in right subtree
Note:  it does not
have two children
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Delete “11” - One child

Remember
11 node

Then Free
the 11 node and 
replace the 
pointer to it with
a pointer to its
child
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FindMin Solution

Fi ndMi n( T :  t r ee poi nt er )  :  t r ee poi nt er  {
/ /  pr econdi t i on:  T i s  not  nul l  / /
i f  T. l ef t  = nul l  r et ur n T
el se r et ur n Fi ndMi n( T. l ef t )
}


