Trees

CSE 373
Data Structures
Lecture 7

Readings and References

* Reading

> Chapter 4.1-4.3,

10/14/02 Trees - Lecture 7 2

Why Do We Need Trees?

« Lists, Stacks, and Queues are linear
relationships
« Information often contains hierarchical
relationships
> File directories or folders on your computer
> Moves in a game
> Employee hierarchies in organizations
 Can build a tree to support fast searching
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Tree Jargon

* root
* nodes and edges °
* leaves

« parent, children, siblings e e e

* ancestors, descendants

* subtrees e e

« path, path length
« height, depth
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More Tree Jargon

* Length of a path = number depth=0,
of edges height = 2
» Depth of anode N = length . °

of path from root to N

» Height of node N = length of
longest path from N to a leaf G 0 Q

* Depth of tree = depth of

deepest node
» Height of tree = height of ee
root depth = 2,

height=0
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Definition and Tree Trivia

» Atreeis a set of nodes
« that is an empty set of nodes, or
* has one node called the root from which
zero or more trees (subtrees) descend
A tree with N nodes always has N-1
edges
» Two nodes in a tree have at most one
path between them
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Paths

» Can a non-zero path from node N reach
node N again?
» No. Trees can never have cycles (loops)
» Does depth of nodes in a non-zero path
increase or decrease?
> Depth always increases in a non-zero path
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Implementation of Trees

* One possible pointer-based Implementation

> tree nodes with value and a pointer to each child

> but how many pointers should we allocate space for?
» A more flexible pointer-based implementation

> 1st Child / Next Sibling List Representation

> Each node has 2 pointers: one to its first child and one to
next sibling

> Can handle arbitrary number of children
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Arbitrary Branching

FirstChiIdE Sibling
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Application: Arithmetic
Expression Trees

Example Arithmetic Expression:
A+(B*(C/D))

How would you express this as a tree?
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Application: Arithmetic
Expression Trees

Example Arithmetic Expression:

A+((B*(C/D))
Tree for the above expression: e °

* Used in most compilers
* No parenthesis need — use tree structure 9 0
« Can speed up calculations e.g. replace
/ node with C/D if C and D are known
« Calculate by traversing tree (how?) G Q
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Traversing Trees

» Preorder: Node, then Children °
recursively

+A*B/CD 0 °

* Inorder: Left child recursively, Node,
Right child recursively (Binary Trees)
ArBeoID ® @

» Postorder: Children recursively, then Node
© ©®

10/14/02 Trees - Lecture 7 12




Binary Trees

» Every node has at most two children
> Most popular tree in computer science
> Easy to implement, fast in operation
* Given N nodes, what is the minimum depth of a
binary tree?
> Atdepth d, you can have N = 24 to 24+1-1 nodes

29<N<2%'-1 implies d=|log,N]
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Minimum depth vs node count

» Atdepth d, you can have N = 24 to 2d+1-1
nodes

* minimum depth d is ®(log N)*

T(n) = ©(f(n)) means
T(n) = O(f(n)) and f(n) = O(T(n))

d=2
N=22to 23-1 (e, 4 to 7 nodes)
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Maximum depth vs node
count

* What is the maximum depth of a binary
tree?
> Degenerate case: Tree is a linked list!
> Maximum depth = N-1

» Goal: Would like to keep depth at
around log N to get better performance
than linked list for operations like Find
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A degenerate tree

A linked list with high overhead
and few redeeming characteristics
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Binary Search Trees

» Binary search trees are binary trees in
which e
> all values in the node’s left subtree
are less than node value e @

> all values in the node’s right subtree
are greater than node value

+ Operations: @ @

> Find, FindMin, FindMax, Insert, Delete
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®

Operations on Binary Search
Trees

* How would you implement these? e

> Recursive definition of binary
search trees allows recursive routines

> Call by reference helps too

C
®

e FindMin

¢ FindMax

* Find x

¢ Insert

e Delete
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Binary SearchTree

@ @ data
. . left E right
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Find

Find(T : tree pointer, x : element): tree pointer {
case {
T=null : return null;
T.data = x : return T;
T.data > x : return Find(T.left,x);
T.data < x : return Find(T.right,x)
}
}
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FindMin

* Class Participation

« Design recursive FindMin operation that
returns the smallest element in a binary
search tree.

> FindMn(T : tree pointer) : tree pointer {
/1 precondition: Tis not null //
??7?

}
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Insert Operation

Insert(T: tree, X elenent)
> Do a “Find” operation for X

> If Xisfound update @
duplicates counter

> Else, “Find” stops at a — 2
NULL pointer @ @

> Insert Node with X there
+ Example: Insert 95 ©6) (99
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Insert 95
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Insert Done Very Elegantly

Insert(T : reference tree pointer, x : element) : integer {
if T=null then

T :=newtree; T.data := x; return 1
case {

T.data = x : return 0;
T.data > x : return Insert(T.left, x);
T.data < x : return Insert(T.right, x);

}
}
Advantage of reference parameter is that the call has
the original pointer not a copy.
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Call by Value vs
Call by Reference

« Call by value
> Copy of parameter is used

used inside call of F

« Call by reference
> Actual parameter is used
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Delete Operation

» Delete is a bit trickier...Why?
* Suppose you want to delete 10
« Strategy:
> Find 10
> Delete the node containing 10
* Problem: When you delete a node,
what do you replace it by?
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Delete Operation

» Problem: When you delete a node,
what do you replace it by? @
*  Solution:
> Ifit has no children, by NULL @ @
> Ifit has 1 child, by that child
> Ifit has 2 children, _by_the_ node with e @
the smallest value in its right subtree
(the successor of the node)

@)
@
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Delete “5” - No children

® @
B G
@)@ - X @ e
NULL the

@ @ pointer to it
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Find 5 node

Delete “24” - One child
Find 24 node @

> Then Free

e @ e @ the 24 node and
replace the

pointer to it with

a pointer to its
child
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Delete “10” - two children

Find 10,
Copy the smallest
value in

right subtree
into the node

e @ — e @ Then recursively

Delete node with
smallest value
in right subtree
Note: it does not
have two children
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Delete “11” - One child

Remember

e () ()
> Then Free
e @ e the 11 node and

replace the
pointer to it with
a pointer to its
child
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FindMin Solution

10/14/02

FindMn(T : tree pointer) : tree pointer {
/1 precondition: Tis not null //

if T.left = null return T

else return FindMn(T.left)

}
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