
1

Trees

CSE 373
Data Structures

Lecture 7

10/14/02 Trees - Lecture 7 2

Readings and References

• Reading
› Chapter 4.1-4.3,

10/14/02 Trees - Lecture 7 3

Why Do We Need Trees?

• Lists, Stacks, and Queues are linear
relationships

• Information often contains hierarchical
relationships
› File directories or folders on your computer
› Moves in a game
› Employee hierarchies in organizations

• Can build a tree to support fast searching

10/14/02 Trees - Lecture 7 4

Tree Jargon

• root
• nodes and edges
• leaves

• parent, children, siblings
• ancestors, descendants

• subtrees

• path, path length
• height, depth

A

B C D

E F

10/14/02 Trees - Lecture 7 5

More Tree Jargon
• Length of a path = number

of edges
• Depth of a node N = length

of path from root to N
• Height of node N = length of

longest path from N to a leaf
• Depth of tree = depth of

deepest node
• Height of tree = height of

root

A

B C D

E F

depth=0,
height = 2

depth = 2,
height=0

10/14/02 Trees - Lecture 7 6

Definition and Tree Trivia

• A tree is a set of nodes
• that is an empty set of nodes, or
• has one node called the root from which

zero or more trees (subtrees) descend
• A tree with N nodes always has N-1

edges
• Two nodes in a tree have at most one

path between them

2

10/14/02 Trees - Lecture 7 7

Paths

• Can a non-zero path from node N reach
node N again?

• No. Trees can never have cycles (loops)

• Does depth of nodes in a non-zero path
increase or decrease?
› Depth always increases in a non-zero path

10/14/02 Trees - Lecture 7 8

Implementation of Trees

• One possible pointer-based Implementation
› tree nodes with value and a pointer to each child

› but how many pointers should we allocate space for?

• A more flexible pointer-based implementation
› 1st Child / Next Sibling List Representation

› Each node has 2 pointers: one to its first child and one to
next sibling

› Can handle arbitrary number of children

10/14/02 Trees - Lecture 7 9

Arbitrary Branching

A

B C D

E F

A

B C D

E F

Data

FirstChild Sibling

10/14/02 Trees - Lecture 7 10

Example Arithmetic Expression:

A + (B * (C / D))

How would you express this as a tree?

Application: Arithmetic
Expression Trees

10/14/02 Trees - Lecture 7 11

Example Arithmetic Expression:

A + (B * (C / D))

Tree for the above expression:

Application: Arithmetic
Expression Trees

• Used in most compilers
• No parenthesis need – use tree structure
• Can speed up calculations e.g. replace

/ node with C/D if C and D are known
• Calculate by traversing tree (how?)

+

A *

B /

C D

10/14/02 Trees - Lecture 7 12

Traversing Trees

• Preorder: Node, then Children
recursively
+ A * B / C D

• Inorder: Left child recursively, Node,
Right child recursively (Binary Trees)
A + B * C / D

• Postorder: Children recursively, then Node
A B C D / * +

+

A *

B /

C D

3

10/14/02 Trees - Lecture 7 13

Binary Trees

• Every node has at most two children
› Most popular tree in computer science

› Easy to implement, fast in operation

• Given N nodes, what is the minimum depth of a
binary tree?
› At depth d, you can have N = 2d to 2d+1-1 nodes

� �Nlogd implies 12N2 2
1dd ���� �

10/14/02 Trees - Lecture 7 14

Minimum depth vs node count

• At depth d, you can have N = 2d to 2d+1-1
nodes

• minimum depth d is �(log N)*
1

2 3

6 74 5

T(n) = �(f(n)) means
T(n) = O(f(n)) and f(n) = O(T(n))

d=2
N=22 to 23-1 (ie, 4 to 7 nodes)

10/14/02 Trees - Lecture 7 15

Maximum depth vs node
count

• What is the maximum depth of a binary
tree?
› Degenerate case: Tree is a linked list!
› Maximum depth = N-1

• Goal: Would like to keep depth at
around log N to get better performance
than linked list for operations like Find

10/14/02 Trees - Lecture 7 16

A degenerate tree

1

5

2

3

4

7

6

A linked list with high overhead
and few redeeming characteristics

10/14/02 Trees - Lecture 7 17

Binary Search Trees

• Binary search trees are binary trees in
which

› all values in the node’s left subtree
are less than node value

› all values in the node’s right subtree
are greater than node value

• Operations:
› Find, FindMin, FindMax, Insert, Delete

9

5

10

96 99

94

97

10/14/02 Trees - Lecture 7 18

Operations on Binary Search
Trees

• How would you implement these?
› Recursive definition of binary

search trees allows recursive routines
› Call by reference helps too

• FindMin
• FindMax
• Find
• Insert
• Delete

9

5

10

96 99

94

97

4

10/14/02 Trees - Lecture 7 19

Binary SearchTree

9

5

10

96 99

94

97

data

left right

9

5 94

10 97

96 99

10/14/02 Trees - Lecture 7 20

Find

Fi nd(T : t r ee poi nt er , x : el ement) : t r ee poi nt er {
case {

T = nul l : r et ur n nul l ;
T. dat a = x : r et ur n T;
T. dat a > x : r et ur n Fi nd(T. l ef t , x) ;
T. dat a < x : r et ur n Fi nd(T. r i ght , x)

}
}

10/14/02 Trees - Lecture 7 21

FindMin

• Class Participation
• Design recursive FindMin operation that

returns the smallest element in a binary
search tree.
› Fi ndMi n(T : t r ee poi nt er) : t r ee poi nt er {

/ / pr econdi t i on: T i s not nul l / /
???
}

10/14/02 Trees - Lecture 7 22

Insert Operation

• Insert(T: tree, X: element)

› Do a “Find” operation for X
› If X is found à update

duplicates counter
› Else, “Find” stops at a

NULL pointer
› Insert Node with X there

• Example: Insert 95

10

96 99

94

97
?

10/14/02 Trees - Lecture 7 23

Insert 95

10

96 99

94

97
10

96 99

94

97

95

10/14/02 Trees - Lecture 7 24

Insert Done Very Elegantly

I nser t (T : r ef er ence t r ee poi nt er , x : el ement) : i nt eger {
i f T = nul l t hen

T : = new t r ee; T. dat a : = x; r et ur n 1
case {

T. dat a = x : r et ur n 0;
T. dat a > x : r et ur n I nser t (T. l ef t , x) ;
T. dat a < x : r et ur n I nser t (T. r i ght , x) ;

}
}

Advantage of reference parameter is that the call has
the original pointer not a copy.

5

10/14/02 Trees - Lecture 7 25

Call by Value vs
Call by Reference

• Call by value
› Copy of parameter is used

• Call by reference
› Actual parameter is used

p pF(p)

used inside call of F

10/14/02 Trees - Lecture 7 26

Delete Operation

• Delete is a bit trickier…Why?
• Suppose you want to delete 10
• Strategy:

› Find 10

› Delete the node containing 10

• Problem: When you delete a node,
what do you replace it by?

94

10 97

5 24

11

17

10/14/02 Trees - Lecture 7 27

Delete Operation
• Problem: When you delete a node,

what do you replace it by?
• Solution:

› If it has no children, by NULL
› If it has 1 child, by that child
› If it has 2 children, by the node with

the smallest value in its right subtree
(the successor of the node)

94

10 97

5 24

11

17

10/14/02 Trees - Lecture 7 28

Delete “5” - No children

Find 5 node

Then Free
the 5 node and
NULL the
pointer to it

94

10 97

5 24

11

17

94

10 97

5 24

11

17

10/14/02 Trees - Lecture 7 29

Delete “24” - One child

Find 24 node

Then Free
the 24 node and
replace the
pointer to it with
a pointer to its
child

94

10 97

5 24

11

17

94

10 97

5 24

11

17

10/14/02 Trees - Lecture 7 30

Delete “10” - two children
Find 10,
Copy the smallest
value in
right subtree
into the node

Then recursively
Delete node with
smallest value
in right subtree
Note: it does not
have two children

94

10 97

5 24

11

17

94

11 97

5 24

11

17

6

10/14/02 Trees - Lecture 7 31

Delete “11” - One child

Remember
11 node

Then Free
the 11 node and
replace the
pointer to it with
a pointer to its
child

94

11 97

5 24

11

17

94

11 97

5 24

11

17

10/14/02 Trees - Lecture 7 32

FindMin Solution

Fi ndMi n(T : t r ee poi nt er) : t r ee poi nt er {
/ / pr econdi t i on: T i s not nul l / /
i f T. l ef t = nul l r et ur n T
el se r et ur n Fi ndMi n(T. l ef t)
}

