Hashing

CSE 373

Data Structures

Lecture 10

Readings and References

- Reading
 - > Chapter 5

The Need for Speed

- Data structures we have looked at so far
 - Use comparison operations to find items
 - Need O(log N) time for Find and Insert
- In real world applications, N is typically between 100 and 100,000 (or more)
 - > log N is between 6.6 and 16.6
- Hash tables are an abstract data type designed for O(1) Find and Inserts

Fewer Functions Faster

- compare lists and stacks
 - by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
 - insert(L,X) into a list versus push(S,X) onto a stack
- compare trees and hash tables
 - trees provide for known ordering of all elements
 - hash tables just let you (quickly) find an element

Limited Set of Hash Operations

- For many applications, a limited set of operations is all that is needed
 - Insert, Find, and Delete
 - Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program
 - user defined
 - > language keywords

Direct Address Tables

- Direct addressing using an array is very fast
- Assume
 - \rightarrow keys are integers in the set U={0,1,...*m*-1}
 - $\rightarrow m$ is small
 - no two elements have the same key
- Then just store each element at the array location array[key]
 - search, insert, and delete are trivial

Direct Access Table



[Cormen, et al]

Direct Address Implementation

```
Delete(Table t, ElementType x)
   T[key[x]] = NULL

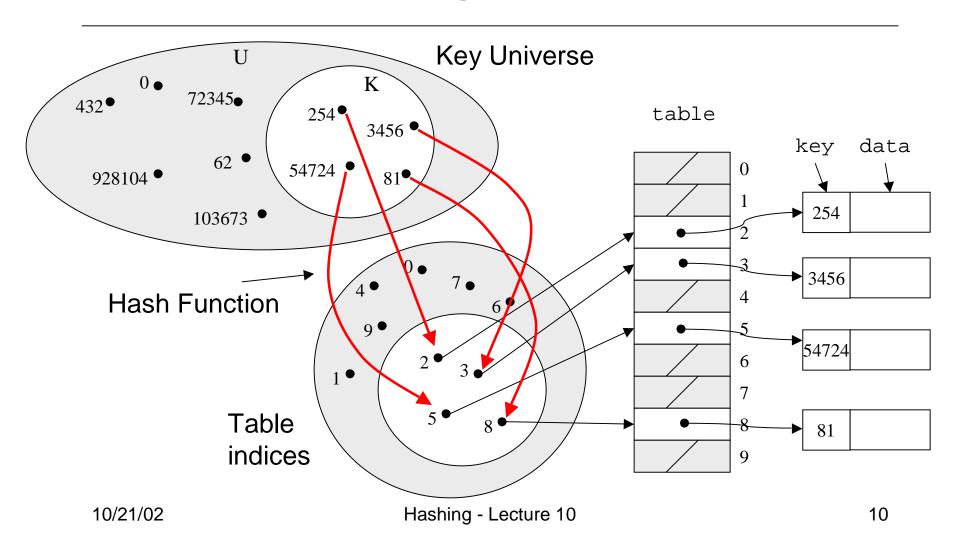
Insert(Table t, ElementType x)
   T[key[x]] = x

Find(Table t, Key k)
   return T[k]
```

An Issue

- The largest possible key in U may be much larger than the number of elements actually stored (|U| much greater than |K|)
 - the table is very sparse and wastes space
 - > in worst case, table too large to have in memory
- If most keys in U are used
 - direct addressing can work very well
- If most keys in U are not used
 - need to map U to a smaller set closer in size to K

Mapping the Keys



Hashing Schemes

- We want to store N items in a table of size M, at a location computed from the key K
- Hash function
 - Method for computing table index from key
- Collision resolution strategy
 - How to handle two keys that hash to the same index

Looking for an Element

- Data records can be stored in arrays.
 - > A[0] = {"CHEM 110", Size 89}
 - A[3] = {"CSE 142", Size 251}
 - > A[17] = {"CSE 373", Size 85}
- Class size for CSE 373?
 - Linear search the array O(N) worst case time
 - › Binary search O(log N) worst case

Go Directly to the Element

- What if we could directly index into the array using the key?
 - A["CSE 373"] = {Size 85}
- Main idea behind hash tables
 - Use a key based on some aspect of the data element to index directly into an array
 - O(1) time to access records

Indexing into Hash Table

- Need a fast hash function to convert the element key (string or number) to an integer (the hash value) (ie, map from U to index)
 - Then use this value to index into an array
 - Hash("CSE 373") = 157, Hash("CSE 143") = 101
- Output of the hash function
 - must always be less than size of array
 - should be as evenly distributed as possible

Choosing the Hash Function

- What properties do we want from a hash function?
 - Want universe of hash values to be distributed randomly to minimize collisions
 - Don't want systematic nonrandom pattern in selection of keys to lead to systematic collisions
 - Want hash value to depend on all values in entire key and their positions

The Key Values are Important

- Notice that one issue with all the hash functions is that the actual content of the key set matters
- The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
 - variable names, words in the English language, reserved keywords, telephone numbers, etc, etc

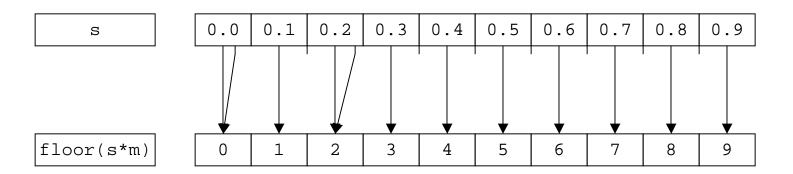
Simple Hashes

- It's possible to have very simple hash functions if you are certain of your keys
- For example,
 - > suppose we know that the keys s will be real numbers uniformly distributed over $0 \le s < 1$
 - > Then a very fast, very good hash function is
 - hash(s) = floor($s \cdot m$)
 - where m is the size of the table

Very Simple Mapping

• hash(s) = floor($s \cdot m$) maps from $0 \le s < 1$ to 0..m-1

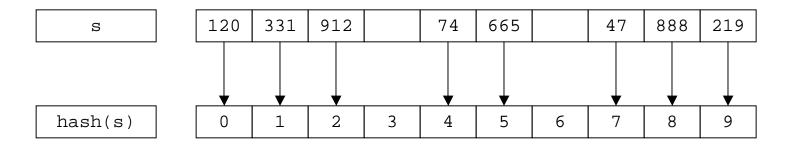
$$\rightarrow$$
 m = 10



Note the even distribution. There are collisions, but we will deal with them later.

Perfect Hashing

- In some cases it's possible to map a known set of keys uniquely to a set of index values
- You must know every single key beforehand and be able to derive a function that works one-to-one (not necessarily onto)

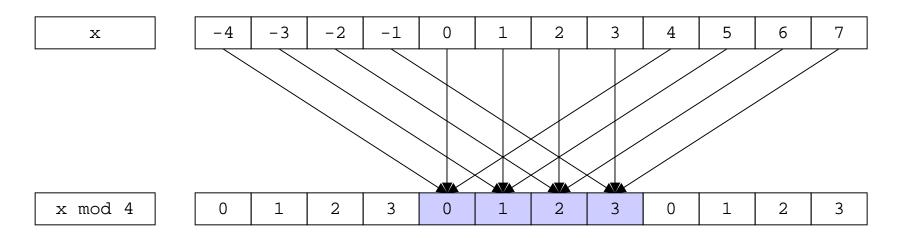


Mod Hash Function

- One solution for a less constrained key set
 - > modular arithmetic
- a **mod** size
 - remainder when "a" is divided by "size"
 - in C or Java this is written as r = a % size;
 - If TableSize = 251
 - 408 mod 251 = 157
 - 352 mod 251 = 101

Modulo Mapping

- a mod m maps from integers to 0..m-1
 - one to one? no
 - onto? yes



10/21/02

Hashing - Lecture 10

Hashing Integers

- If keys are integers, we can use the hash function:
 - Hash(key) = key mod TableSize
- Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, ...)
 - all keys map to the same index
 - Need to pick TableSize carefully: often, a prime number

Nonnumerical Keys

- Many hash functions assume that the universe of keys is the natural numbers N={0,1,...}
- Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
- Generally work with the ASCII character codes when converting strings to numbers

Characters to Integers

- If keys are strings can get an integer by adding up ASCII values of characters in key
- We are converting a very large string $c_0c_1c_2...c_n$ to a relatively small number $c_0+c_1+c_2+...+c_n$ mod size.

character	С	S	E		3	7	3	<0>
ASCII value>	67	83	69	32	51	55	51	0

Hash Must be Onto Table

- Problem 2: What if *TableSize* is 10,000 and all keys are 8 or less characters long?
 - > chars have values between 0 and 127
 - Keys will hash only to positions 0 through 8*127 = 1016
- Need to distribute keys over the entire table or the extra space is wasted

Problems with Adding Characters

- Problems with adding up character values for string keys
 - If string keys are short, will not hash evenly to all of the hash table
 - Different character combinations hash to same value
 - "abc", "bca", and "cab" all add up to the same value

Characters as Integers

 An character string can be thought of as a base 256 number. The string c₁c₂...c_n can be thought of as the number

$$c_n + 256c_{n-1} + 256^2c_{n-2} + ... + 256^{n-1}c_1$$

Use Horner's Rule to Hash!

```
r= 0;
for i = 1 to n do
r := (c[i] + 256*r) mod TableSize
```

Collisions

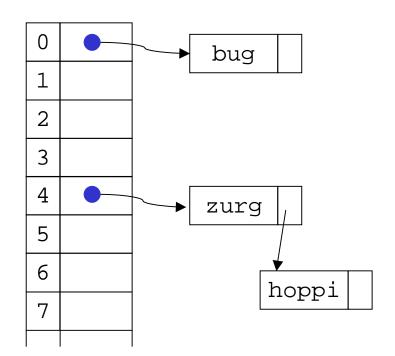
- A collision occurs when two different keys hash to the same value
 - E.g. For TableSize = 17, the keys 18 and
 35 hash to the same value
 - \rightarrow 18 mod 17 = 1 and 35 mod 17 = 1
- Cannot store both data records in the same slot in array!

Collision Resolution

- Separate Chaining
 - Use data structure (such as a linked list) to store multiple items that hash to the same slot
- Open addressing (or probing)
 - search for empty slots using a second function and store item in first empty slot that is found

Resolution by Chaining

- Each hash table cell holds pointer to linked list of records with same hash value
- Collision: Insert item into linked list
- To Find an item: compute hash value, then do Find on linked list
- Note that there are potentially as many as TableSize lists



Why Lists?

- Can use List ADT for Find/Insert/Delete in linked list
 - O(N) runtime where N is the number of elements in the particular chain
- Can also use Binary Search Trees
 - O(log N) time instead of O(N)
 - But the number of elements to search through should be small
 - y generally not worth the overhead of BSTs

Load Factor of a Hash Table

- Let N = number of items to be stored
- Load factor $\lambda = N/TableSize$
 - \rightarrow TableSize = 101 and N =505, then λ = 5
 - > TableSize = 101 and N = 10, then λ = 0.1
- Average length of chained list = λ and so average time for accessing an item = O(1) + O(λ)
 - → Want λ to be close to 1 (i.e. TableSize ≈ N)
 - > But chaining continues to work for $\lambda > 1$

Resolution by Open Addressing

- No links, all keys are in the table
 - reduced overhead saves space
- When searching for x, check locations
 h₁(x), h₂(x), h₃(x), ... until either
 - > x is found; or
 - we find an empty location (x not present)
- Various flavors of open addressing differ in which probe sequence they use

Cell Full? Keep Looking.

- h_i(X)=(Hash(X)+F(i)) mod TableSize
 - \rightarrow Define F(0) = 0
- F is the collision resolution function.
 Some possibilities:
 - Linear: F(i) = i
 - Quadratic: F(i) = i²
 - Double Hashing: F(i) = i-Hash₂(X)

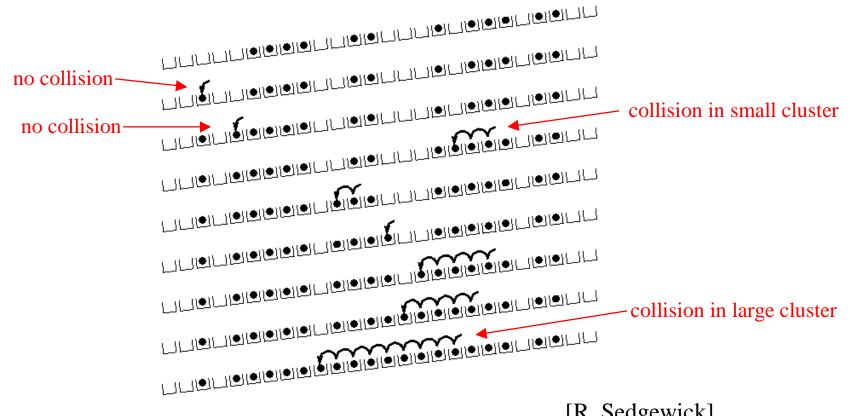
Linear Probing

- When searching for k, check locations h(k),
 h(k)+1, h(k)+2, ... mod TableSize until either
 - > K is found; or
 - we find an empty location (k not present)
- If table is very sparse, almost like separate chaining.
- When table starts filling, we get clustering but still constant average search time.
- Full table ⇒ infinite loop.

Primary Clustering Problem

- Once a block of a few contiguous occupied positions emerges in table, it becomes a "target" for subsequent collisions
- As clusters grow, they also merge to form larger clusters.
- Primary clustering: elements that hash to different cells probe same alternative cells

Linear Probing - Clustering



[R. Sedgewick]

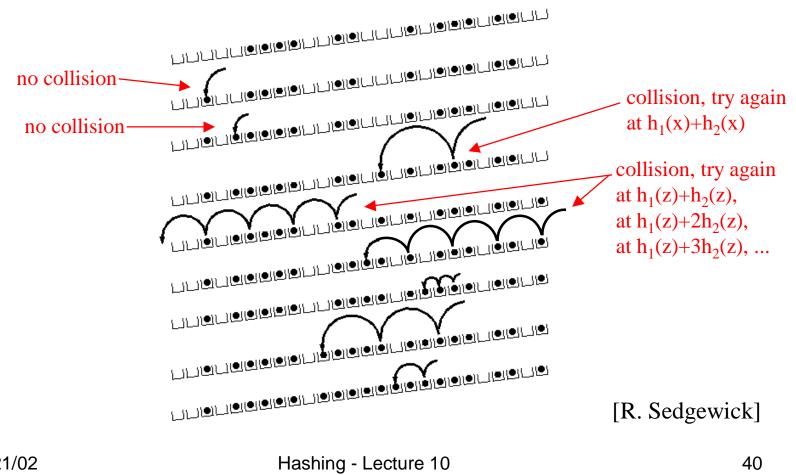
Quadratic Probing

- When searching for x, check locations
 h₁(X), h₁(X)+ i², h₁(X)+i³,... mod
 TableSize until either
 - > x is found; or
 - we find an empty location (x not present)
- No primary clustering but secondary clustering possible

Double Hashing

- When searching for x, check locations h₁(x),
 h₁(X) + h₂(X),h₁(X)+2*h₂(X),... mod Tablesize until either
 - > x is found; or
 - we find an empty location (x not present)
- Must be careful about h₂(x)
 - Not 0 and not a divisor of M
 - $P = \{h_1(k) = k \mod m_1, h_2(k) = 1 + (k \mod m_2)\}$
 - \rightarrow where m_2 is slightly less than m_1

Double Hashing



Rules of Thumb

- Separate chaining is simple but wastes space...
- Linear probing uses space better, is fast when tables are sparse, interacts well with paging and caching
- Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation
- For average cost about t + O(1)
 - > Max load for Linear Probing is $1-1/\sqrt{t}$
 - Max load for Double Hashing is 1–1/t

Rehashing – Rebuild the Table

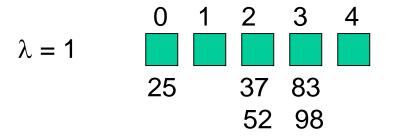
- Need to use lazy deletion if we use probing (why?)
 - Need to mark array slots as deleted after Delete
 - consequently, deleting doesn't make the table any less full than it was before the delete
- If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and Inserts may fail

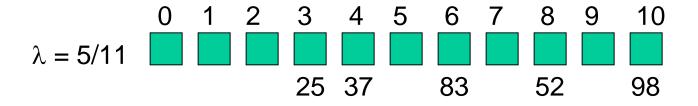
Rehashing

- Build a bigger hash table of approximately twice the size when λ exceeds a particular value
 - Go through old hash table, ignoring items marked deleted
 - Recompute hash value for each non-deleted key and put the item in new position in new table
 - Cannot just copy data from old table because the bigger table has a new hash function
- Running time is O(N) but happens very infrequently
 - Not good for real-time safety critical applications

Rehashing Example

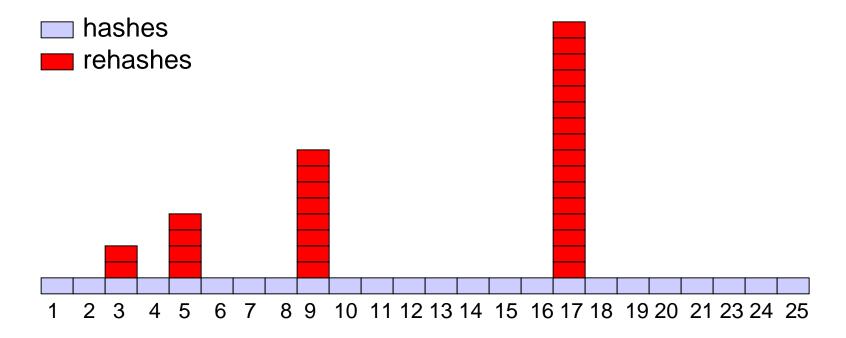
• Open hashing $-h_1(x) = x \mod 5$ rehashes to $h_2(x) = x \mod 11$.





Rehashing Picture

 Starting with table of size 2, double when load factor > 1.



Amortized Analysis of Rehashing

- Cost of inserting n keys is < 3n
- $2^k + 1 \le n \le 2^{k+1}$
 - Hashes = n
 - \Rightarrow Rehashes = 2 + 2² + ... + 2^k = 2^{k+1} 2
 - \rightarrow Total = n + 2^{k+1} 2 < 3n
- Example

$$n = 33$$
, Total = $33 + 64 - 2 = 95 < 99$

Caveats

- Hash functions are very often the cause of performance bugs.
- Hash functions often make the code not portable.
- Sometime a poor HF distribution-wise is faster overall.
- Always check where the time goes