

The Need for Speed

- Data structures we have looked at so far
, Use comparison operations to find items
, Need O(log N) time for Find and Insert
- In real world applications, N is typically between 100 and 100,000 (or more) , $\log \mathrm{N}$ is between 6.6 and 16.6
- Hash tables are an abstract data type designed for $\mathrm{O}(1)$ Find and Inserts

Limited Set of Hash Operations

- For many applications, a limited set of operations is all that is needed
, Insert, Find, and Delete
, Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program
, user defined
, language keywords

Readings and References

- Reading
, Chapter 5

Fewer Functions Faster

- compare lists and stacks
, by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
, insert(L,X) into a list versus push(S,X) onto a stack
- compare trees and hash tables
, trees provide for known ordering of all elements
, hash tables just let you (quickly) find an element

10/21/02
Hashing - Lecture 10

Direct Address Tables

- Direct addressing using an array is very fast
- Assume
, keys are integers in the set $\mathrm{U}=\{0,1, \ldots m-1\}$
, m is small
, no two elements have the same key
- Then just store each element at the array location array[key]
, search, insert, and delete are trivial

Looking for an Element

- Data records can be stored in arrays.
, $A[0]=\{" C H E M 110 "$, Size 89\}
, A[3] = \{"CSE 142", Size 251\}
, A[17] = \{"CSE 373", Size 85\}
- Class size for CSE 373?
, Linear search the array $-\mathrm{O}(\mathrm{N})$ worst case time
, Binary search $-\mathrm{O}(\log \mathrm{N})$ worst case

10/21/02
Hashing - Lecture 10
12

Go Directly to the Element

- What if we could directly index into the array using the key?
, A["CSE 373"] = \{Size 85\}
- Main idea behind hash tables
, Use a key based on some aspect of the data element to index directly into an array
, O(1) time to access records

Choosing the Hash Function

- What properties do we want from a hash function?
, Want universe of hash values to be distributed randomly to minimize collisions
, Don't want systematic nonrandom pattern in selection of keys to lead to systematic collisions
, Want hash value to depend on all values in entire key and their positions

Simple Hashes

- It's possible to have very simple hash functions if you are certain of your keys
- For example,
, suppose we know that the keys s will be real numbers uniformly distributed over $0 \leq s<1$
, Then a very fast, very good hash function is
- hash(s) = floor ($s \cdot m$)
- where m is the size of the table

Indexing into Hash Table

- Need a fast hash function to convert the element key (string or number) to an integer (the hash value) (ie, map from U to index)
, Then use this value to index into an array
, Hash("CSE 373") = 157, Hash("CSE 143") = 101
- Output of the hash function
, must always be less than size of array
, should be as evenly distributed as possible

The Key Values are Important

- Notice that one issue with all the hash functions is that the actual content of the key set matters
- The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
, variable names, words in the English language, reserved keywords, telephone numbers, etc, etc

10/21/02
Hashing - Lecture 10

Perfect Hashing

- In some cases it's possible to map a known set of keys uniquely to a set of index values
- You must know every single key beforehand and be able to derive a function that works one-to-one (not necessarily onto)

hash (s)
10/21/02

Hashing - Lecture 10

Hashing Integers

- If keys are integers, we can use the hash function:
, Hash(key) = key mod TableSize
- Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, ...)
, all keys map to the same index
, Need to pick TableSize carefully: often, a prime number

Characters to Integers

- If keys are strings can get an integer by adding up ASCII values of characters in key
- We are converting a very large string $c_{0} c_{1} c_{2} \ldots c_{n}$ to a relatively small number $\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots+\mathrm{C}_{n}$ mod size. to a natural number quickly and effectively before or during the hash calculation
- Generally work with the ASCII character codes when converting strings to numbers

Hash Must be Onto Table

- Problem 2: What if TableSize is 10,000 and all keys are 8 or less characters long?
, chars have values between 0 and 127
, Keys will hash only to positions 0 through $8^{*} 127=1016$
- Need to distribute keys over the entire table or the extra space is wasted

Characters as Integers

- An character string can be thought of as a base 256 number. The string $\mathrm{c}_{1} \mathrm{C}_{2} \ldots \mathrm{c}_{\mathrm{n}}$ can be thought of as the number
$c_{n}+256 c_{n-1}+256^{2} c_{n-2}+\ldots+256^{n-1} c_{1}$
- Use Horner's Rule to Hash!
$r=0$;
for $i=1$ to n do
$r:=$ (c[i] + 256*r) mod TableSize

Collision Resolution

- Separate Chaining

, Use data structure (such as a linked list) to store multiple items that hash to the same slot

- Open addressing (or probing)
, search for empty slots using a second function and store item in first empty slot that is found

Problems with Adding Characters

- Problems with adding up character values for string keys
, If string keys are short, will not hash evenly to all of the hash table
, Different character combinations hash to same value
- "abc", "bca", and "cab" all add up to the same value

Collisions

- A collision occurs when two different keys hash to the same value
, E.g. For TableSize = 17, the keys 18 and 35 hash to the same value
, $18 \bmod 17=1$ and $35 \bmod 17=1$
- Cannot store both data records in the same slot in array!

10/21/02
Hashing - Lecture 10

Resolution by Chaining

- Each hash table cell holds pointer to linked list of records with same hash value
- Collision: Insert item into linked list
- To Find an item: compute hash value, then do Find on linked list
- Note that there are potentially
 as many as TableSize lists

10/21/02
Hashing - Lecture 10

Why Lists?

- Can use List ADT for Find/Insert/Delete in linked list
, $\mathrm{O}(\mathrm{N})$ runtime where N is the number of elements in the particular chain
- Can also use Binary Search Trees
, $\mathrm{O}(\log \mathrm{N})$ time instead of $\mathrm{O}(\mathrm{N})$
, But the number of elements to search through should be small
, generally not worth the overhead of BSTs

Resolution by Open Addressing

- No links, all keys are in the table , reduced overhead saves space
- When searching for x, check locations $h_{1}(x), h_{2}(x), h_{3}(x), \ldots$ until either $>X$ is found; or
, we find an empty location (x not present)
- Various flavors of open addressing differ in which probe sequence they use

Linear Probing

- When searching for κ, check locations $h(k)$, $h(K)+1, h(K)+2, \ldots$ mod TableSize until either
> K is found; or
, we find an empty location (k not present)
- If table is very sparse, almost like separate chaining.
- When table starts filling, we get clustering but still constant average search time.
- Full table \Rightarrow infinite loop.

Cell Full? Keep Looking.

- $h_{i}(X)=(H a s h(X)+F(i))$ mod TableSize
, Define $F(0)=0$
- F is the collision resolution function.

Some possibilities:
, Linear: F(i) = i
, Quadratic: $F(i)=i^{2}$
, Double Hashing: $F(i)=i \cdot \operatorname{Hash}_{2}(X)$

Load Factor of a Hash Table

- Let $\mathrm{N}=$ number of items to be stored
- Load factor $\lambda=\mathrm{N} /$ TableSize
, TableSize $=101$ and $N=505$, then $\lambda=5$
, TableSize $=101$ and $N=10$, then $\lambda=0.1$
- Average length of chained list $=\lambda$ and so average time for accessing an item $=\mathbf{O}(1)+$ $O(\lambda)$
, Want λ to be close to 1 (i.e. TableSize $\approx N$)
, But chaining continues to work for $\lambda>1$

Primary Clustering Problem

- Once a block of a few contiguous occupied positions emerges in table, it becomes a "target" for subsequent collisions
- As clusters grow, they also merge to form larger clusters.
- Primary clustering: elements that hash to different cells probe same alternative cells

Linear Probing - Clustering		
no collision Lu Litull Uu collision in small cluster Lu Du b [R. Sedgewick]		
10/21/02	Hashing - Lecture 10	37

Rules of Thumb

- Separate chaining is simple but wastes space...
- Linear probing uses space better, is fast when tables are sparse, interacts well with paging and caching
- Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation
- For average cost about $t+\mathrm{O}(1)$
, Max load for Linear Probing is $1-1 / \sqrt{t}$
, Max load for Double Hashing is $1-1 / \mathrm{t}$
Hashing - Lecture 10

Quadratic Probing

- When searching for x, check locations $h_{1}(X), h_{1}(X)+i^{2}, h_{1}(X)+i^{3}, \ldots \bmod$ TableSize until either
$>x$ is found; or
, we find an empty location (x not present)
- No primary clustering but secondary clustering possible

Rehashing - Rebuild the Table

- Need to use lazy deletion if we use probing (why?)
, Need to mark array slots as deleted after Delete
, consequently, deleting doesn't make the table any less full than it was before the delete
- If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and Inserts may fail

10/21/02
Hashing - Lecture 10

Rehashing

- Build a bigger hash table of approximately twice the size when λ exceeds a particular value
, Go through old hash table, ignoring items marked deleted
, Recompute hash value for each non-deleted key and put the item in new position in new table
, Cannot just copy data from old table because the bigger table has a new hash function
- Running time is $\mathrm{O}(\mathrm{N})$ but happens very infrequently , Not good for real-time safety critical applications

Rehashing Picture

- Starting with table of size 2 , double when load factor > 1 .

\square rehashes

Caveats

- Hash functions are very often the cause of performance bugs.
- Hash functions often make the code not portable.
- Sometime a poor HF distribution-wise is faster overall.
- Always check where the time goes

10/21/02
Hashing - Lecture 10

Rehashing Example

- Open hashing $-h_{1}(x)=x$ mod 5 rehashes to $h_{2}(x)=x \bmod 11$.

Amortized Analysis of

 Rehashing- Cost of inserting n keys is $<3 n$
- $2^{\mathrm{k}}+1 \leq \mathrm{n} \leq 2^{\mathrm{k}+1}$
, Hashes $=\mathrm{n}$
- Rehashes $=2+2^{2}+\ldots+2^{k}=2^{k+1}-2$
, Total $=n+2^{k+1}-2<3 n$
- Example
, $n=33$, Total $=33+64-2=95<99$

10/21/02

