Binary Heaps

CSE 373

Data Structures

Lecture 11

Readings and References

Reading

> Sections 6.1-6.4

A New Problem...

- Application: Find the smallest (or highest priority) item quickly
 - Operating system needs to schedule jobs according to priority
 - Doctors in ER take patients according to severity of injuries
 - Event simulation (bank customers arriving and departing, ordered according to when the event happened)

Priority Queue ADT

- Priority Queue can efficiently do:
 - > FindMin (and DeleteMin)
 - Insert
- What if we use...
 - Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
 - › Binary Search Trees: What is the run time for Insert and FindMin?

Less flexibility → More speed

Lists

- If sorted: FindMin is O(1) but Insert is O(N)
- If not sorted: Insert is O(1) but FindMin is O(N)
- Balanced Binary Search Trees (BSTs)
 - Insert is O(log N) and FindMin is O(log N)
- BSTs look good but...
 - BSTs are efficient for all Finds, not just FindMin
 - We only need FindMin

Better than a speeding BST

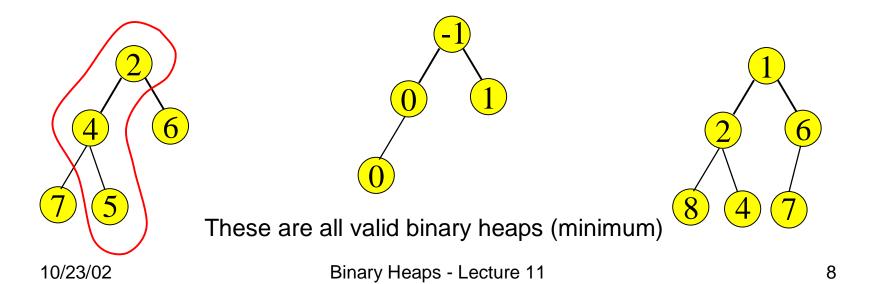
- We can do better than Balanced Binary Search Trees?
 - Very limited requirements: Insert, FindMin, DeleteMin
 - FindMin is O(1)
 - Insert is O(log N)
 - DeleteMin is O(log N)

Binary Heaps

- A binary heap is a binary tree that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - Satisfies the heap order property
 - every node is less than or equal to its children
 - or every node is greater than or equal to its children
- The root node is always the smallest node
 - or the largest, depending on the heap order

Heap order property

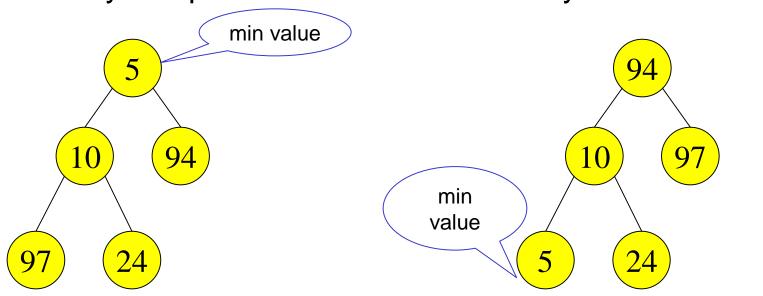
- A heap provides limited ordering information
- Each path is sorted, but the subtrees are not sorted relative to each other
 - A binary heap is NOT a binary search tree



Binary Heap vs Binary Search Tree

Binary Heap

Binary Search Tree



Parent is less than both left and right children

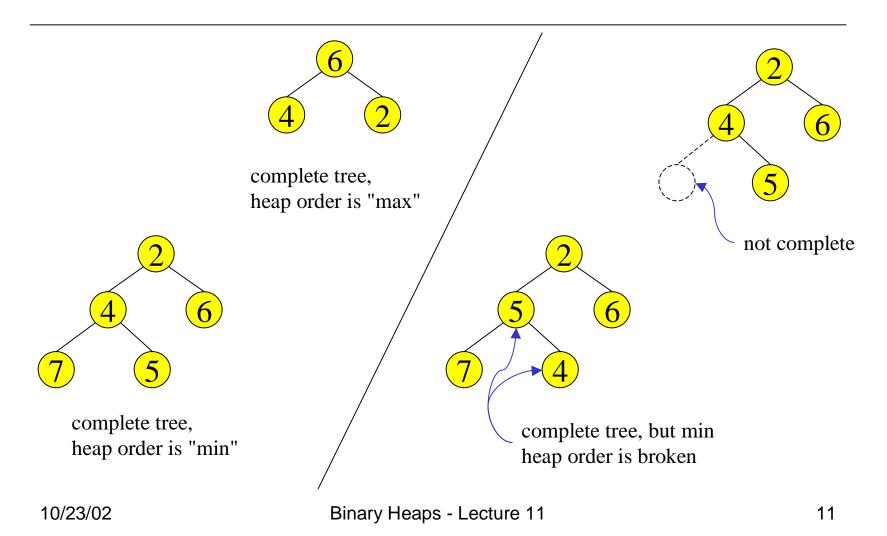
Parent is greater than left child, less than right child

Structure property

- A binary heap is a complete tree
 - All nodes are in use except for possibly the right end of the bottom row

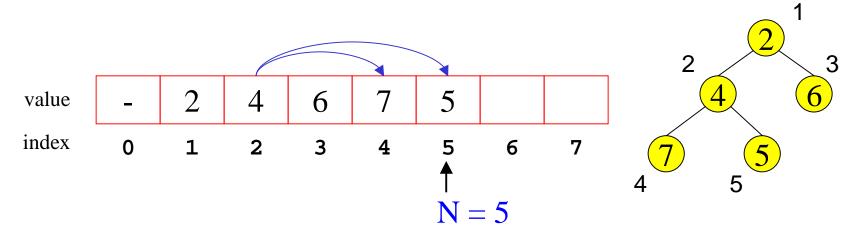


Examples



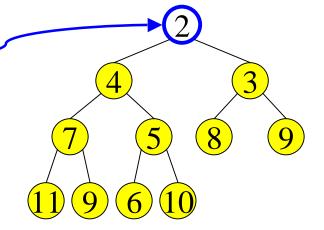
Array Implementation of Heaps (Implicit Pointers)

- Root node = A[1]
- Children of A[i] = A[2i], A[2i + 1]
- Keep track of current size N (number of nodes)



FindMin and DeleteMin

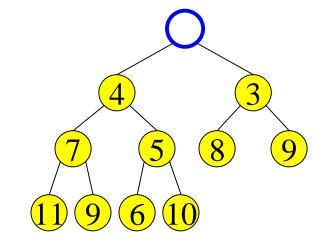
- FindMin: Easy!
 - Return root value A[1]
 - > Run time = ?



- DeleteMin:
 - Delete (and return) value at root node

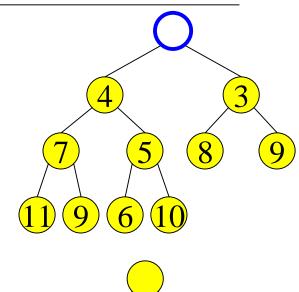
DeleteMin

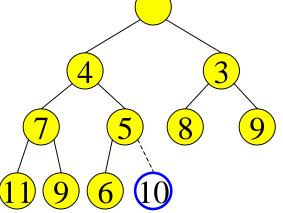
Delete (and return)
 value at root node



Maintain the Structure Property

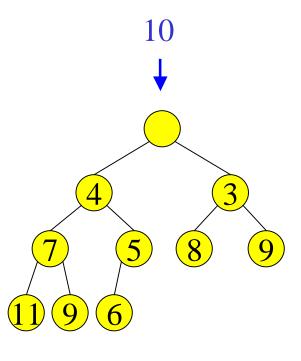
- We now have a "Hole" at the root
 - Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete



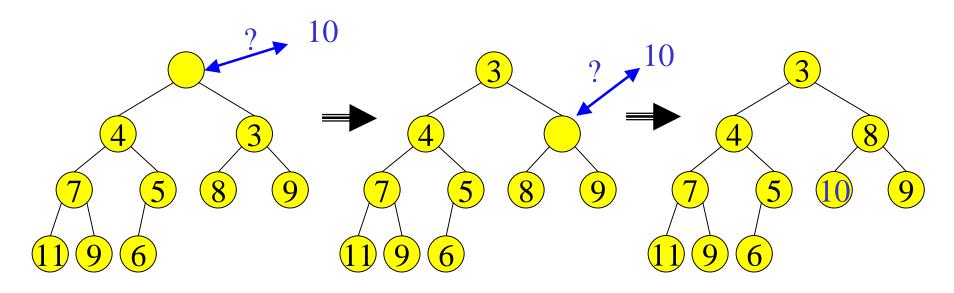


Maintain the Heap Property

- The last value has lost its node
 - we need to find a new place for it
- We can do a simple insertion sort operation to find the correct place for it in the tree



DeleteMin: Percolate Down



- Keep comparing with children A[2i] and A[2i + 1]
- Copy smaller child up and go down one level
- Done if both children are ≥ item or reached a leaf node
- What is the run time?

Percolate Down

```
PercDown(i:integer, x :integer): {
   // N is the number of entries in queue//
   j : integer;
   Case{
      2i > N : A[i] := x; //at bottom//
      2i = N : if A[2i] < x then
                  A[i] := A[2i]; A[2i] := x;
               else A[i] := x_i
      2i < N : if A[2i] < A[2i+1] then j := 2i;
               else j := 2i+1;
               if A[j] < x then
                  A[i] := A[j]; PercDown(j,x);
               else A[i] := x_i
10/23/02
                   Binary Heaps - Lecture 11
```

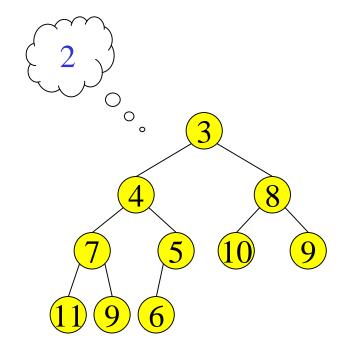
18

DeleteMin: Run Time Analysis

- Run time is O(depth of heap)
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - \rightarrow depth = $\lfloor \log_2(N) \rfloor$
- Run time of DeleteMin is O(log N)

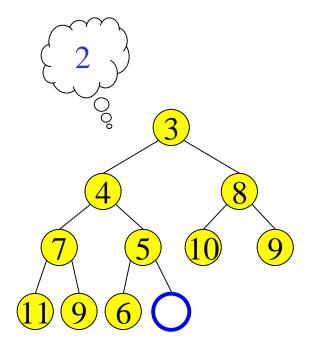
Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done



Maintain the Structure Property

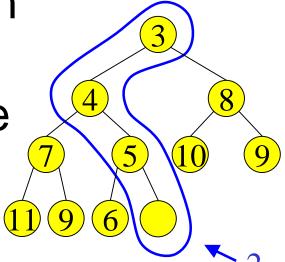
- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly



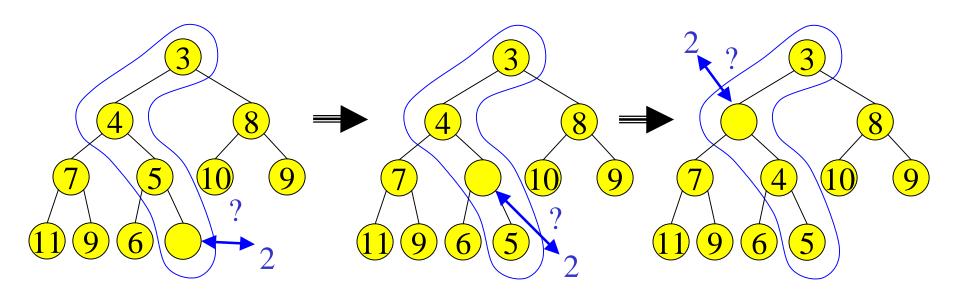
Maintain the Heap Property

The new value goes where?

 We can do a simple insertion sort operation to find the correct place for it in the tree

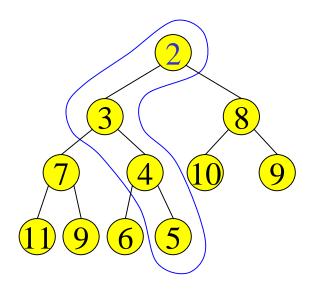


Insert: Percolate Up



- Start at last node and keep comparing with parent A[i/2]
- If parent larger, copy parent down and go up one level
- Done if parent ≤ item or reached top node A[1]
- Run time?

Insert: Done



• Run time?

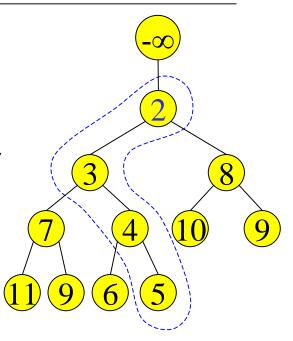
PercUp

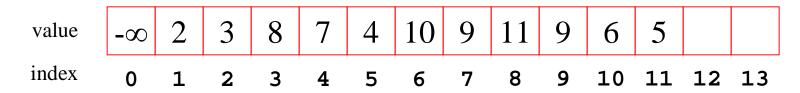
- Class participation
- Define PercUp which percolates new entry to correct spot.
- Note: the parent of i is i/2

```
PercUp(i : integer, x : integer): {
????
}
```

Sentinel Values

- Every iteration of Insert needs to test:
 - if it has reached the top node A[1]
 - → if parent ≤ item
- Can avoid first test if A[0] contains a very large negative value
 - \rightarrow sentinel $-\infty$ < item, for all items
- Second test alone always stops at top





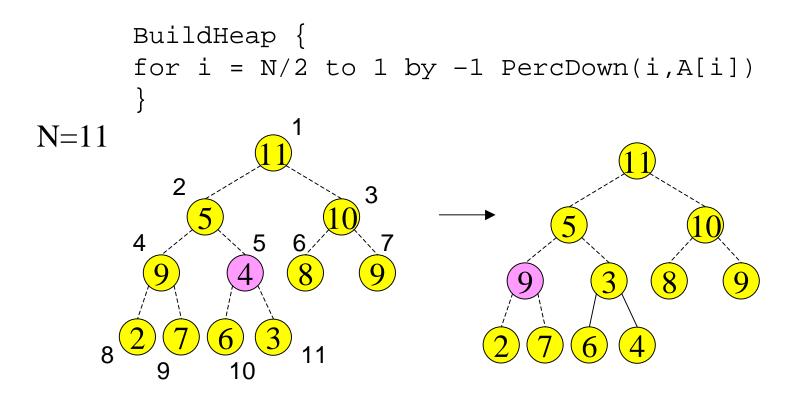
10/23/02

Binary Heaps - Lecture 11

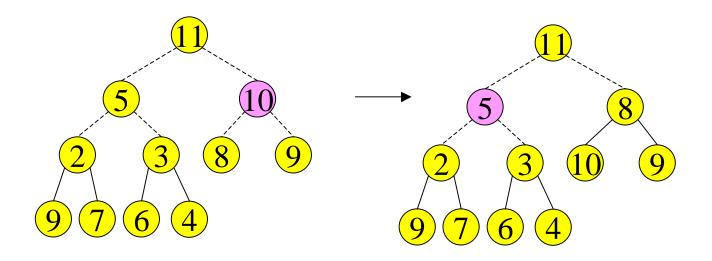
Binary Heap Analysis

- Space needed for heap of N nodes: O(MaxN)
 - An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel
- Time
 - FindMin: O(1)
 - DeleteMin and Insert: O(log N)
 - › BuildHeap from N inputs : O(N)

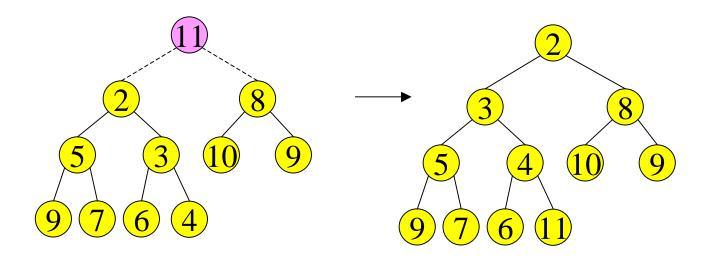
Build Heap



Build Heap



Build Heap



Analysis of Build Heap

- Assume $N = 2^K 1$
 - > Level 1: k -1 steps for 1 item
 - Level 2: k 2 steps of 2 items
 - Level 3: k 3 steps for 4 items
 - Level i : k i steps for 2ⁱ⁻¹ items

Total Steps =
$$\sum_{i=1}^{k-1} (k-i) 2^{i-1} = 2^k - k - 1$$

= O(N)

- Find(X, H): Find the element X in heap H of N elements
 - What is the running time? O(N)
- FindMax(H): Find the maximum element in H
 - What is the running time? O(N)
- We sacrificed performance of these operations in order to get O(1) performance for FindMin

- DecreaseKey(P, Δ ,H): Decrease the key value of node at position P by a positive amount Δ . eg, to increase priority
 - > First, subtract ∆ from current value at P
 - › Heap order property may be violated
 - so percolate up to fix
 - > Running Time: O(log N)

- IncreaseKey(P,Δ,H): Increase the key value of node at position P by a positive amount Δ. eg, to decrease priority
 - First, add ∆ to current value at P
 - Heap order property may be violated
 - so percolate down to fix
 - > Running Time: O(log N)

- Delete(P,H): E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - › Use DecreaseKey(P,∞,H) followed by DeleteMin
 - Running Time: O(log N)

- Merge(H1,H2): Merge two heaps H1 and H2 of size O(N). H1 and H2 are stored in two arrays.
 - Can do O(N) Insert operations: O(N log N) time
 - › Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: O(N)

PercUp Solution

```
PercUp(i : integer, x : integer): {
   if i = 1 then A[1] := x
   else if A[i/2] < x then
        A[i] := x;
        else
        A[i] := A[i/2];
        Percup(i/2,x);
}</pre>
```