Binomial Queues

CSE 373
Data Structures
Lecture 12

Reading

- Reading
 - > Section 6.8,

10/25/02

Binomial Queues - Lecture 12

Merging heaps

- Binary Heap is a special purpose hot rod
 - > FindMin, DeleteMin and Insert only
 - > does not support fast merges of two heaps
- For some applications, the items arrive in prioritized clumps, rather than individually
- Is there somewhere in the heap design that we can give up a little performance so that we can gain faster merge capability?

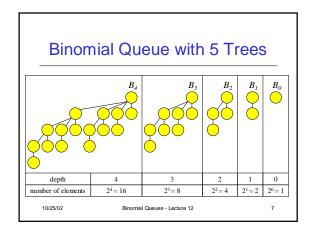
10/25/02 Binomial Queues - Lecture 12

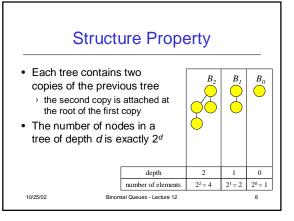
Binomial Queues

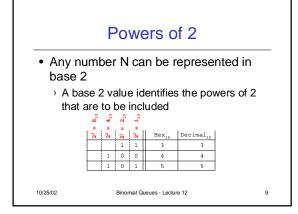
- Binomial Queues are designed to be merged quickly with one another
- Using pointer-based design we can merge large numbers of nodes at once by simply pruning and grafting tree structures
- More overhead than Binary Heap, but the flexibility is needed for improved merging speed

10/25/02 Binomial Queues - Lecture 12

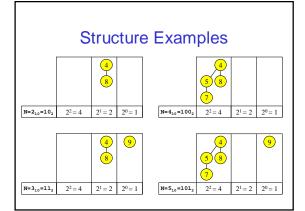
Worst Case Run Times

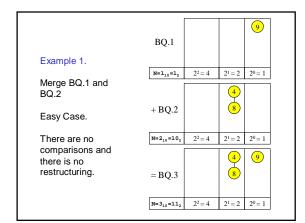

Binary Heap Binomial Queue Θ(log N) Insert Θ(log N) FindMin O(log N) Θ(1) DeleteMin Θ(log N) $\Theta(\log N)$ O(log N) Merge Θ(N) 10/25/02 Binomial Queues - Lecture 12

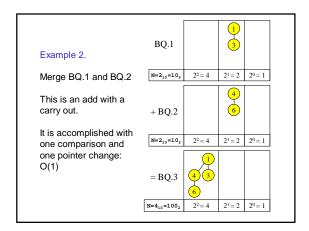

Binomial Queues

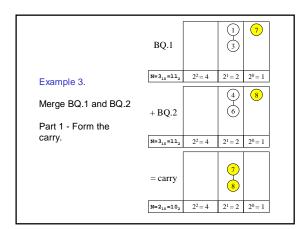

- Binomial queues give up ⊕(1) FindMin performance in order to provide O(log N) merge performance
- A binomial queue is a collection (or forest) of heap-ordered trees
 - › Not just one tree, but a collection of trees
 -) each tree has a defined structure and capacity
 - › each tree has the familiar heap-order property

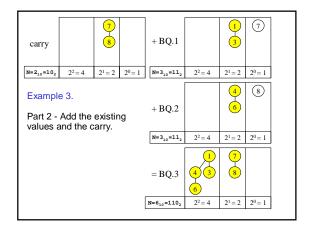
25/02 I


Binomial Queues - Lecture 12 6

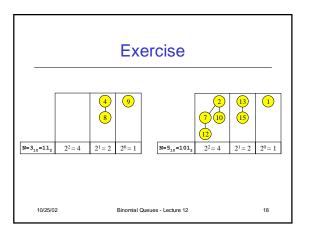

Numbers of nodes Any number of entries in the binomial queue can be stored in a forest of binomial trees Each tree holds the number of nodes appropriate to its depth, ie 2^d nodes So the <u>structure</u> of a forest of binomial trees can be characterized with a single binary number 100₂ → 1·2² + 0·2¹ + 0·2⁰ = 4 nodes




What is a merge?


- There is a direct correlation between
- the number of nodes in the tree
- > the representation of that number in base 2
-) and the actual structure of the tree
- When we merge two queues, the number of nodes in the new queue is the sum of N₁+N₂
- We can use that fact to help see how fast merges can be accomplished

10/25/02 Binomial Queues - Lecture 12



Merge Algorithm

- Just like binary addition algorithm
- Assume trees X₀,...,X_n and Y₀,...,Y_n are binomial queues
 - X_i and Y_i are of type B_i or null

 $\begin{array}{lll} \textbf{C}_0 := & \textbf{null;} \ // \textbf{initial carry is null} // \\ \textbf{for i = 0 to n do} \\ & \textbf{combine } \textbf{X}_i, \textbf{Y}_i, \ \textbf{and } \textbf{C}_i \ \textbf{to form } \textbf{Z}_i \ \textbf{and new } \textbf{C}_{i+1} \\ \textbf{Z}_{n+1} := & \textbf{C}_{n+1} \end{array}$

10/25/02 Binomial Queues - Lecture 12

O(log N) time to Merge

- For N keys there are at most \[log_2 N \] trees in a binomial forest.
- Each merge operation only looks at the root of each tree.
- Total time to merge is O(log N).

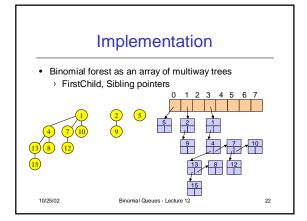
10/25/02

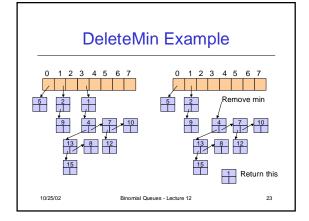
Binomial Queues - Lecture 12

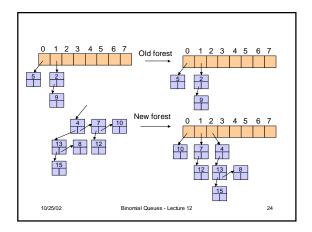
Insert

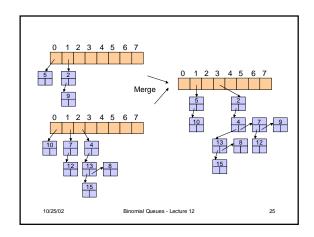
- Create a single node queue B₀ with the new item and merge with existing queue
- O(log N) time

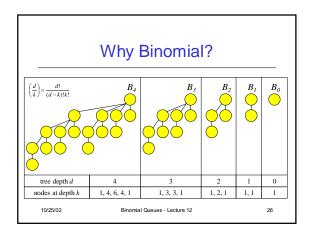
/25/02 Binom

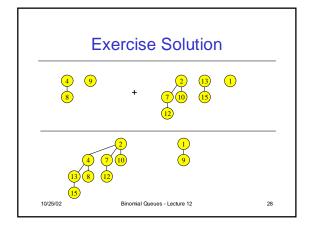

DeleteMin


- 1. Assume we have a binomial forest $X_0,...,X_m$
- 2. Find tree X_k with the smallest root
- 3. Remove X_k from the queue
- Remove root of X_k (return this value)
 This yields a binomial forest Y₀, Y₁, ..., Y_{k-1}.
- 5. Merge this new queue with remainder of the original (from step 3)
- Total time = O(log N)


10/25/02


Binomial Queues - Lecture 12


21



Other Priority Queues

- Leftist Heaps
 - O(log N) time for insert, deletemin, merge
- Skew Heaps
 - O(log N) amortized time for insert, deletemin, merge
- · Calendar Queues
 - O(1) average time for insert and deletemin

10/25/02 Binomial Queues - Lecture 12

