Divide and Conquer Sorting

CSE 373
Data Structures
Lecture 14

Readings

* Reading
» Section 7.6, Mergesort
» Section 7.7, Quicksort

11/15/02 Divide and Conquer Sorting -
Lecture 14

“Divide and Conquer”

* Very important strategy in computer science:
> Divide problem into smaller parts
» Independently solve the parts
» Combine these solutions to get overall solution

* ldea 1: Divide array into two halves,
recursively sort left and right halves, then
merge two halves - known as Mergesort

* ldea 2 : Partition array into small items and
large items, then recursively sort the two sets
- known as Quicksort

11/15/02 Divide and Conquer Sorting - 3
Lecture 14

Mergesort

81219145316

N

* Divide it in two at the midpoint

* Conquer each side in turn (by
recursively sorting)

* Merge two halve together

11/15/02 Divide and Conquer Sorting -
Lecture 14

Mergesort Example

81219145316

Divide o
N 82 9 4 53 1
Divide — T i
... 82 9 4 5 3
Divide 7 W %
1l element § 2 9 4 S 3
Merge ;"/8 \/ ;0/5
2 4 8 9 1 3 5
Merge | » 345 6 8 ¢
11/15/02

Divide and Conquer Sorting -
Lecture 14

Auxiliary Array

* The merging requires an auxiliary array.

Auxiliary array

11/15/02 Divide and Conquer Sorting - 6
Lecture 14

Auxiliary Array

* The merging requires an auxiliary array.

1 Auxiliary array

11/15/02 Divide and Conquer Sorting - 7
Lecture 14

Auxiliary Array

* The merging requires an auxiliary array.

1121314]s5 Auxiliary array

/

11/15/02 Divide and Conquer Sorting - 8
Lecture 14

Merging

11/15/02

A

coyf i 1)

A
target

Divide and Conquer Sorting -

Lecture 14

normal

Left completed
first

Merging

first
&~ M
second' i /L j A Right completed
first
A
target
11/15/02 Divide and Conquer Sorting - 10

Lecture 14

Merging

Merge (A[], T[] : integer array, left, right
mid, i, Jj, k, 1, target : integer;
mid := (right + left)/2;
i := left; 7 := mid + 1; target := left;
while 1 < mid and j < right do
if A[1] < A[j] then Tl[target] := A[1] ; 1:
else T[target] := A[3]]; 7 = 7] + 1;
target := target + 1;
if 1 > mid then //left completed//
for k := left to target-1 do A[k] := T[k];
if jJ > right then //right completed//
k : = mid; 1 := right;
while k > 1 do A[l] := A[k]; k := k-1; 1

for k := left to target-1 do A[k] := T[k];

11/15/02 Divide and Conquer Sorting -
Lecture 14

integer)

11

Recursive Mergesort

Mergesort (A[],

T[]

integer array, left,

if left < right then
mid := (left + right)/2;
Mergesort (A, T, left,mid) ;
Mergesort (A, T,mid+1, right) ;
Merge (A, T, left, right);

MainMergesort (A[1l.

.nj:

integer array, n

T[1l..n]: integer array;

Mergesort[A,T,1,n];

11/15/02

Divide and Conquer Sorting -
Lecture 14

right

integer)

integer)

{

12

Iterative Mergesort

11/15/02

W

7

T4

T4

W

W

\

¥

¥

v ¥

y

¥

y

¥

y

¥

¥

Divide and Conquer Sorting -

Lecture 14

Merge by 1
Merge by 2
Merge by 4

Merge by 8

13

Iterative Mergesort

T

T

A TATETY

T

T

T4

T4

T4

T4

y

¥

¥ Y

\

¥

v ¥

v ¥

¥

¥

¥ \

¥

\

¥

\

¥

y ¥

¥

v copy

11/15/02

Divide and Conquer Sorting -
Lecture 14

Merge by 1
Merge by 2
Merge by 4
Merge by 8

Merge by 16

14

Iterative Mergesort

IterativeMergesort (A[l..n]: integer array, n : integer) : {
//precondition: n is a power of 2//

i, m, parity : integer;

T[1l..n]: integer array;

m := 2; parity := 0;

while m < n do
for 1 =1 ton -m+ 1 by m do
if parity = 0 then Merge(A,T,1i,i+m-1);
else Merge (T,A,1,i+m-1);

parity := 1 - parity;
m := 2*m;
1if parity = 1 then
for 1 = 1 to n do A[i] := TI[i];

How do you handle non-powers of 27
How can the final copy be avoided?

11/15/02 Divide and Conquer Sorting - 15
Lecture 14

Mergesort Analysis

* Let T(N) be the running time for an
array of N elements

* Mergesort divides array in half and calls
itself on the two halves. After returning,
it merges both halves using a temporary
array

« Each recursive call takes T(N/2) and
merging takes O(N)

11/15/02 Divide and Conquer Sorting - 16
Lecture 14

Mergesort Recurrence
Relation

* The recurrence relation for T(N) is:
» T(1) < a

* base case: 1 element array = constant time
» T(N) < 2T(N/2) + bN
» Sorting N elements takes
— the time to sort the left half

— plus the time to sort the right half
— plus an O(N) time to merge the two halves

« T(N)=0O(n log n)

11/15/02 Divide and Conquer Sorting -
Lecture 14

17

Properties of Mergesort

* Not in-place
» Requires an auxiliary array

o Stable

» Make sure that left is sent to target on
equal values.

* Very few comparisons

* lterative Mergesort reduces copying.

11/15/02 Divide and Conquer Sorting -
Lecture 14

18

Quicksort

* Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space
that MergeSort does

» Partition array into left and right sub-arrays
 the elements in left sub-array are all less than pivot
» elements in right sub-array are all greater than pivot

» Recursively sort left and right sub-arrays
» Concatenate left and right sub-arrays in O(1) time

11/15/02 Divide and Conquer Sorting - 19
Lecture 14

"Four easy steps”

 Tosortan array S

» If the number of elements in S is 0 or 1,
then return. The array is sorted.

» Pick an element vin S. This is the pivot
value.

» Partition S-{v} into two disjoint subsets, S,
= {all values x<v}, and S, = {all values x>v}.

» Return QuickSort(S,), v, QuickSort(S,)

11/15/02 Divide and Conquer Sorting - 20
Lecture 14

The steps of QuickSort

S 81 43 31 57 select pivot value

/5 0 @

S i S) partition S

a

QuickSort(S,) and
S, S, QuickSortESz)

S 0 13 26 31 43 57 65 75 81 092 Presto! S is sorted

[Weiss]

11/15/02 Divide and Conquer Sorting - 21
Lecture 14

Detalls, detalls

 "The algorithm so far lacks quite a few
of the details”

* Implementing the actual partitioning
* Picking the pivot
» want a value that will cause |S,| and |S,| to

be non-zero, and close to equal in size if
possible

* Dealing with cases where the element
equals the pivot

11/15/02 Divide and Conquer Sorting - 22
Lecture 14

Quicksort Partitioning

Need to partition the array into left and right sub-
arrays

» the elements in left sub-array are < pivot

» elements in right sub-array are > pivot

How do the elements get to the correct partition?
» Choose an element from the array as the pivot

» Make one pass through the rest of the array and
swap as needed to put elements in partitions

11/15/02 Divide and Conquer Sorting - 23
Lecture 14

Partitioning is done In-Place

* One implementation (there are others)
» mediangd finds pivot and sorts left, center, right
» Swap pivot with next to last element
» Set pointers i and j to start and end of array
» Increment | until you hit element A[i] > pivot
» Decrement j until you hit element A[j] < pivot
» Swap AJi] and AJj]
» Repeat until i and j cross
> Swap pivot (= A[N-2]) with AJi]

11/15/02 Divide and Conquer Sorting -
Lecture 14

24

Choose the pivot as the median of three.

Place the pivot and the largest at the right
and the smallest at the left

i0149735256)8
T -2)
Tl o o[- e
T - Bl

Move i to the right to be larger than pivot.
Move j to the left to be smaller than pivot.

Swap

11/15/02 Divide and Conquer Sorting -
Lecture 14

26

]

1 4 2 5 7 8

316 |9
N //‘\Y/

S, <pivot pivot g > pivot

Recursive Quicksort

Quicksort (A[]: integer array, left,right : integer):
pivotindex integer;
1f left + CUTOFF < right then

pivot := median3 (A, left,right);

pivotindex := Partition(A,left,right-1,pivot);

Quicksort (A, left, pivotindex — 1);
Quicksort (A, pivotindex + 1, right);

else

Insertionsort (A, left, right);

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

11/15/02

Divide and Conquer Sorting -
Lecture 14

28

Alternative Pivot Rules

* Chose AJleft]
» Fast, but may be too biased

* Chose AJrandom], left < random < right
» Completely unbiased
» Will cause relatively even split, but slow

* Median of three, Aleft], A[right],
Al(left+right)/2]

» The standard, tends to be unbiased, and does a
little sorting on the side.

11/15/02 Divide and Conquer Sorting -
Lecture 14

29

Quicksort Best Case
Performance

 Algorithm always chooses best pivot
and splits sub-arrays in half at each
recursion
» T(0)=T(1) =0(1)
» constant time if O or 1 element

» For N > 1, 2 recursive calls plus linear time
for partitioning
» T(N) =2T(N/2) + O(N)
« Same recurrence relation as Mergesort

> T(N) = O(N log N)

11/15/02 Divide and Conquer Sorting - 30
Lecture 14

Quicksort Worst Case
Performance

* Algorithm always chooses the worst pivot —
one sub-array is empty at each recursion
T(N)<aforN<C
T(N) < T(N-1) + bN
< T(N-2) + b(N-1) + bN
< T(C) + b(C+1)+ ... + bN
<a+b(C+C+1+C+2+ ... +N)
T(N) = O(N?)
* Fortunately, average case performance is O(N
log N) (see text for proof)

VOOV WV WV WV WV

11/15/02 Divide and Conquer Sorting - 31
Lecture 14

Properties of Quicksort

* Not stable because of long distance
swapping.

* No iterative version (without using a stack).

* Pure quicksort not good for small arrays.

* “In-place”, but uses auxiliary storage because
of recursive calls.

* O(n log n) average case performance, but
O(n?) worst case performance.

11/15/02 Divide and Conquer Sorting - 32
Lecture 14

Folklore

* “Quicksort is the best in-memory sorting
algorithm.”

* Truth

» Quicksort uses very few comparisons on
average.

» Quicksort does have good performance in
the memory hierarchy.
« Small footprint
» Good locality

11/15/02 Divide and Conquer Sorting - 33
Lecture 14

