Sorting Lower Bound Radix Sort

CSE 373

Data Structures

Lecture 15

Reading

Reading

> Sections 7.8-7.11

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in O(N log N) best case running time
- Can we do any better?
- No, if the basic action is a comparison.

Sorting Model

- Recall our basic assumption: we can <u>only</u> compare two elements at a time
 - we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
 - Assume no duplicates
- How many possible orderings can you get?
 - \rightarrow Example: a, b, c (N = 3)

Permutations

- How many possible orderings can you get?
 - \rightarrow Example: a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - \rightarrow 6 orderings = 3.2.1 = 3! (ie, "3 factorial")
 - > All the possible permutations of a set of 3 elements
- For N elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - \rightarrow N(N-1)(N-2)···(2)(1)= N! possible orderings

Decision Tree

The leaves contain all the possible orderings of a, b, c

11/18/02

Sorting Lower Bound, Radix Sort -Lecture 15

Decision Trees

- A Decision Tree is a Binary Tree such that:
 - > Each node = a set of orderings
 - ie, the remaining solution space
 - > Each edge = 1 comparison
 - > Each leaf = 1 unique ordering
 - > How many leaves for N distinct elements?
 - N!, ie, a leaf for each possible ordering
- Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Trees and Sorting

- Every sorting algorithm corresponds to a decision tree
 - > Finds correct leaf by choosing edges to follow
 - ie, by making comparisons
 - > Each decision reduces the possible solution space by one half
- Run time is ≥ maximum no. of comparisons
 - maximum number of comparisons is the length of the longest path in the decision tree, i.e. the height of the tree

Decision Tree Example

How many leaves on a tree?

- Suppose you have a binary tree of height d.
 How many leaves can the tree have?
 - \rightarrow d = 1 \rightarrow at most 2 leaves,
 - \rightarrow d = 2 \rightarrow at most 4 leaves, etc.

Lower bound on Height

- A binary tree of height d has at most 2^d leaves
 - \rightarrow depth d = 1 \rightarrow 2 leaves, d = 2 \rightarrow 4 leaves, etc.
 - Can prove by induction
- Number of leaves, L ≤ 2^d
- Height $d \ge \log_2 L$
- The decision tree has N! leaves
- So the decision tree has height d ≥ log₂(N!)

log(N!) is $\Omega(NlogN)$

$$\log(N!) = \log(N \cdot (N-1) \cdot (N-2) \cdot \cdots (2) \cdot (1))$$

$$= \log N + \log(N-1) + \log(N-2) + \cdots + \log 2 + \log 1$$

$$\geq \log N + \log(N-1) + \log(N-2) + \cdots + \log \frac{N}{2}$$

$$\Leftrightarrow \text{ of the selected rms is } \geq \log N/2$$

$$\geq \frac{N}{2} \log \frac{N}{2}$$

each of the selected terms is
$$\geq \log N/2$$

$$\geq \frac{N}{2}(\log N - \log 2) = \frac{N}{2}\log N - \frac{N}{2}$$
$$= \Omega(N\log N)$$

$\Omega(N \log N)$

- Run time of any comparison-based sorting algorithm is Ω(N log N)
- Can we do better if we don't use comparisons?

Radix Sort: Sorting integers

- Historically goes back to the 1890 census.
- Radix sort = multi-pass bucket sort of integers in the range 0 to BP-1
- Bucket-sort from least significant to most significant "digit" (base B)
- Requires P(B+N) operations where P is the number of passes (the number of base B digits in the largest possible input number).
- If P and B are constants then O(N) time to sort!

Radix Sort Example

Input data

Bucket sort by 1's digit

0	1	2	3	4	5	6	7	8	9
	72 <u>1</u>		12 <u>3</u>				53 <u>7</u> 6 <u>7</u>	47 <u>8</u> 3 <u>8</u>	<u>9</u>

After 1st pass

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example

After 1st pass

Bucket sort by 10's

digit

0	1	2	3	4	5	6	7	8	9
<u>0</u> 3 <u>0</u> 9		7 <u>2</u> 1 1 <u>2</u> 3	5 <u>3</u> 7 <u>3</u> 8			<u>6</u> 7	4 <u>7</u> 8		

After 2nd pass

Radix Sort Example

After 2 nd pass 3 9	Bucket sort by 100's digit										After 3 rd pass 3 9
721	0	1	2	3	4	5	6	7	8	9	38
123	<u>0</u> 03	<u>1</u> 23			<u>4</u> 78	<u>5</u> 37		<u>7</u> 21			67
537	<u>0</u> 09										123
38	<u>0</u> 38										478
67	<u>0</u> 67										537
478											721

Invariant: after k passes the low order k digits are sorted.

Implementation Options

List

- > List of data, bucket array of lists.
- Concatenate lists for each pass.
- Array / List
 - Array of data, bucket array of lists.
- Array / Array
 - Array of data, array for all buckets.
 - > Requires counting.

Array / Array

Array / Array

- Pass 1 (over A)
 - Calculate counts and addresses for 1st "digit"
- Pass 2 (over T)
 - Move data from A to T
 - > Calculate counts and addresses for 2nd "digit"
- Pass 3 (over A)
 - Move data from T to A
 - Calculate counts and addresses for 3nd "digit"
- •
- In the end an additional copy may be needed.

Choosing Parameters for Radix Sort

- N number of integers given
- m bit numbers given
- B number of buckets
 - \rightarrow B = 2^r calculations can be done by shifting.
 - N/B not too small, otherwise too many empty buckets.
 - > P = m/r should be small.
- Example 1 million 64 bit numbers. Choose $B = 2^{16} = 65,536$. 1 Million / $B \approx 15$ numbers per bucket. P = 64/16 = 4 passes.

Properties of Radix Sort

- Not in-place
 - > needs lots of auxiliary storage.
- Stable
 - equal keys always end up in same bucket in the same order.
- Fast
 - \rightarrow B = 2^r buckets on m bit numbers

$$O(\frac{m}{r}(n+2^r))$$
 time

Internal versus External Sorting

- So far assumed that accessing A[i] is fast –
 Array A is stored in internal memory (RAM)
 - > Algorithms so far are good for internal sorting
- What if A is so large that it doesn't fit in internal memory?
 - Data on disk or tape
 - Delay in accessing A[i] e.g. need to spin disk and move head

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
 - > External sorting Basic Idea:
 - Load chunk of data into RAM, sort, store this "run" on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
 - Text gives some examples

Summary of Sorting

- Sorting choices:
 - \rightarrow O(N²) Bubblesort, Insertion Sort
 - > O(N log N) average case running time:
 - Heapsort: In-place, not stable.
 - Mergesort: O(N) extra space, stable.
 - Quicksort: claimed fastest in practice but, O(N²) worst case. Needs extra storage for recursion. Not stable.
 - O(N) Radix Sort: fast and stable. Not comparison based. Not in-place.