Disjoint Union / Find

CSE 373 Data Structures Lecture 17

Reading

- Reading
 - › Chapter 8

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
 > {3,5,7}, {4,2,8}, {9}, {1,6}
- Each set has a unique name, one of its members

> {3,<u>5</u>,7} , {4,2,<u>8</u>}, {<u>9</u>}, {<u>1</u>,6}

Union

- Union(x,y) take the union of two sets named x and y
 - > {3,<u>5</u>,7} , {4,2,<u>8</u>}, {<u>9</u>}, {<u>1</u>,6}
 - > Union(5,1)

 $\{3, \underline{5}, 7, 1, 6\}, \{4, 2, \underline{8}\}, \{\underline{9}\},$

Find

- Find(x) return the name of the set containing x.
 - > {3,<u>5</u>,7,1,6}, {4,2,<u>8</u>}, {<u>9</u>},
 - > Find(1) = 5
 - > Find(4) = 8

Cute Application

• Build a random maze by erasing edges.

Cute Application

Pick Start and End

Cute Application

• Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles no cell can reach itself by a path unless it retraces some part of the path.

A Cycle

A Good Solution

A Hidden Tree

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself. We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Start

t	1	2	3	4	5	6	
	7	8	9	10	11	12	
	13	14	15	16	17	18	
	19	20	21	22	23	24	
	25	26	27	28	29	30	
	31	32	33	34	35	36	End

Basic Algorithm

- S = set of sets of connected cells
- E = set of edges
- Maze = set of maze edges initially empty

```
While there is more than one set in S
pick a random edge (x,y) and remove from E
u := Find(x);
v := Find(y);
if u \neq v then
Union(u,v)
else
add (x,y) to Maze
All remaining members of E together with Maze form the maze
```

Example Step

Example

Example

Example at the End

Find Operation

 Find(x) follow x to the root and return the root

Union Operation

Union(i,j) - assuming i and j roots, point i to j.

Simple Implementation

• Array of indices

Union

```
Union(up[] : integer array, x,y : integer) : {
//precondition: x and y are roots//
Up[x] := y
}
```

Constant Time!

Exercise

- Design Find operator
 - > Recursive version
 - > Iterative version

```
Find(up[] : integer array, x : integer) : integer {
  //precondition: x is in the range 1 to size//
  ???
}
```

A Bad Case

Weighted Union

- Weighted Union
 - Always point the smaller tree to the root of the larger tree

Example Again

Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^h.
- Proof by induction
 - > Basis: h = 0. The up-tree has one node, $2^0 = 1$
 - Inductive step: Assume true for all h' < h.</p>

Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- n ≥ 2^h
- $\log_2 n \ge h$
- Find(x) in tree T takes O(log n) time.
- Can we do better?

Worst Case for Weighted Union n/2 Weighted Unions

n/4 Weighted Unions

Example of Worst Cast (cont')

After n - 1 = n/2 + n/4 + ... + 1 Weighted Unions

Elegant Array Implementation

Weighted Union

```
W-Union(i,j : index){
//i and j are roots//
wi := weight[i];
wj := weight[j];
if wi < wj then
    up[i] := j;
    weight[j] := wi + wj;
else
    up[j] :=i;
    weight[i] := wi +wj;
}</pre>
```

Path Compression

• On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] ≠ 0 do //find root//
        r := up[r];
    if i ≠ r then //compress path//
        k := up[i];
        while k ≠ r do
            up[i] := r;
            i := k;
            k := up[k]
    return(r)
}
```

Example

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log n).
- Time complexity for m ≥ n operations on n elements is O(m log* n) where log* n is a very slow growing function.
 - Log * n < 7 for all reasonable n. Essentially constant time per operation!
- Using "ranked union" gives an even better bound theoretically.

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is O(log n).
- An individual operation can be costly, but over time the average cost per operation is not.

Find Solutions

Recursive

```
Find(up[] : integer array, x : integer) : integer {
  //precondition: x is in the range 1 to size//
  if up[x] = 0 then return x
  else return Find(up,up[x]);
 }
```

Iterative

```
Find(up[] : integer array, x : integer) : integer {
  //precondition: x is in the range 1 to size//
  while up[x] ≠ 0 do
    x := up[x];
  return x;
 }
```