Graph Introduction

CSE 373

Data Structures

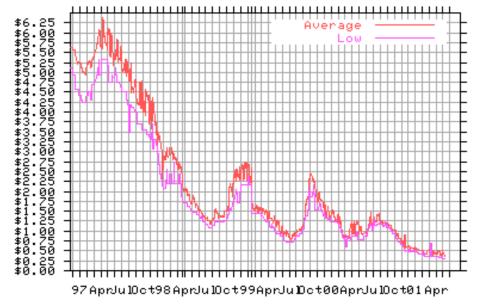
Lecture 18

Reading

- Reading
 - > Section 9.1

What are graphs?

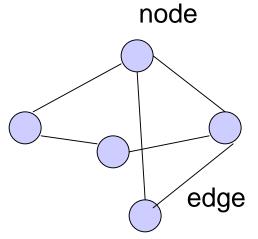
Yes, this is a graph....



 But we are interested in a different kind of "graph"

Graphs

- Graphs are composed of
 - Nodes (vertices)
 - › Edges

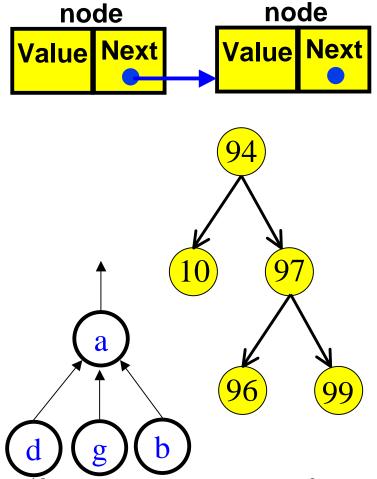


Varieties

- Nodes
 - Labeled or unlabeled
- Edges
 - › Directed or undirected
 - Labeled or unlabeled

Motivation for Graphs

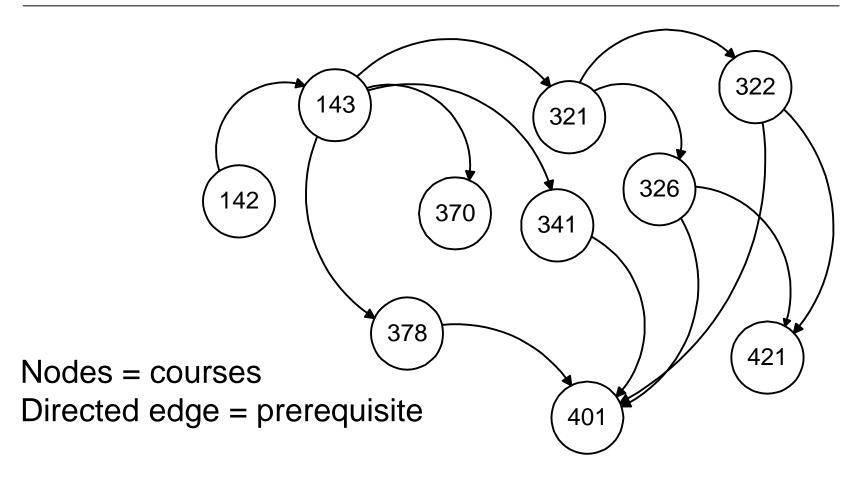
- Consider the data structures we have looked at so far...
- <u>Linked list</u>: nodes with 1 incoming edge + 1 outgoing edge
- Binary trees/heaps: nodes with 1 incoming edge + 2 outgoing edges
- <u>Binomial trees/B-trees</u>: nodes with 1 incoming edge + multiple outgoing edges
- <u>Up-trees</u>: nodes with multiple incoming edges + 1 outgoing edge



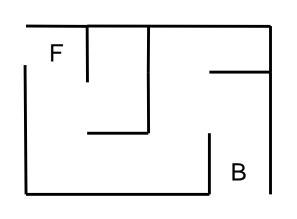
Motivation for Graphs

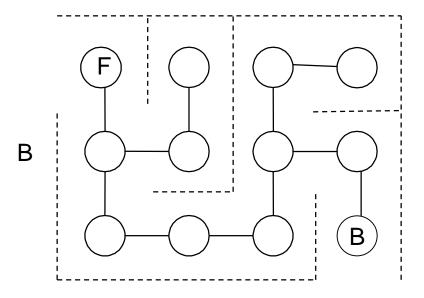
- What is common among these data structures?
- How can you generalize them?
- Consider data structures for representing the following problems...

CSE Course Prerequisites at UW



Representing a Maze

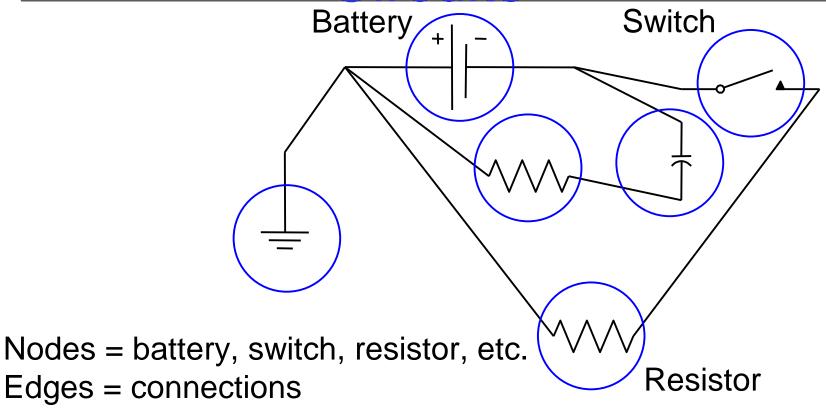




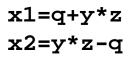
Nodes = rooms Edge = door or passage

Representing Electrical

Circuits



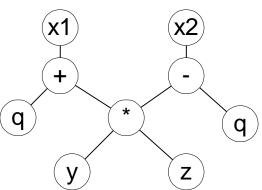
Program statements



Naive: q + x q q y*z calculated twice y z

common subexpression eliminated:

Nodes = symbols/operators Edges = relationships



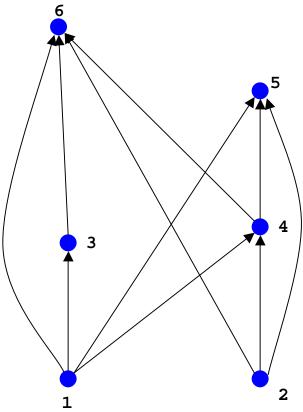
Precedence

$$S_1$$
 a=0;
 S_2 b=1;
 S_3 c=a+1
 S_4 d=b+a;
 S_5 e=d+1;
 S_6 e=c+d;

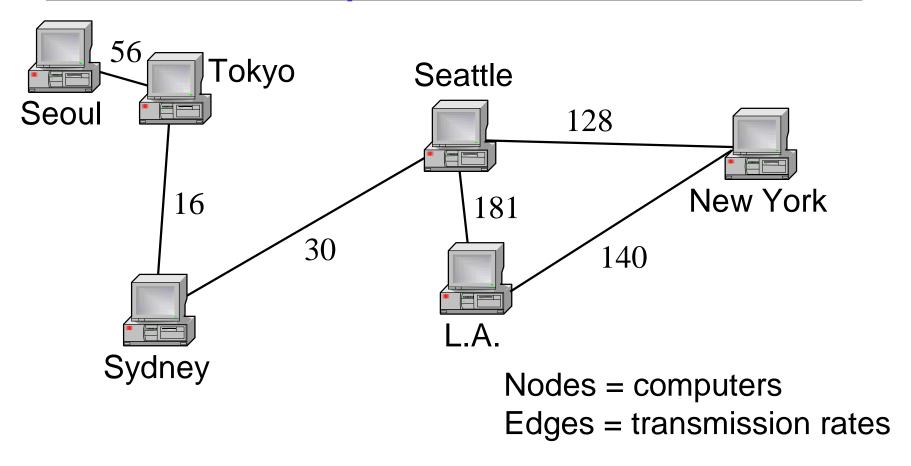
Which statements must execute before S_6 ? S_1 , S_2 , S_3 , S_4

Nodes = statements

Edges = precedence requirements



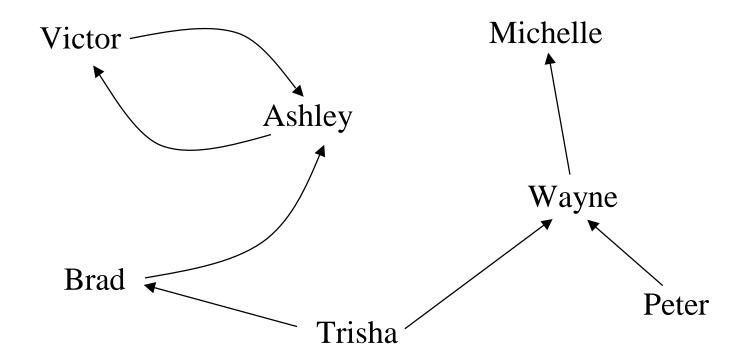
Information Transmission in a Computer Network



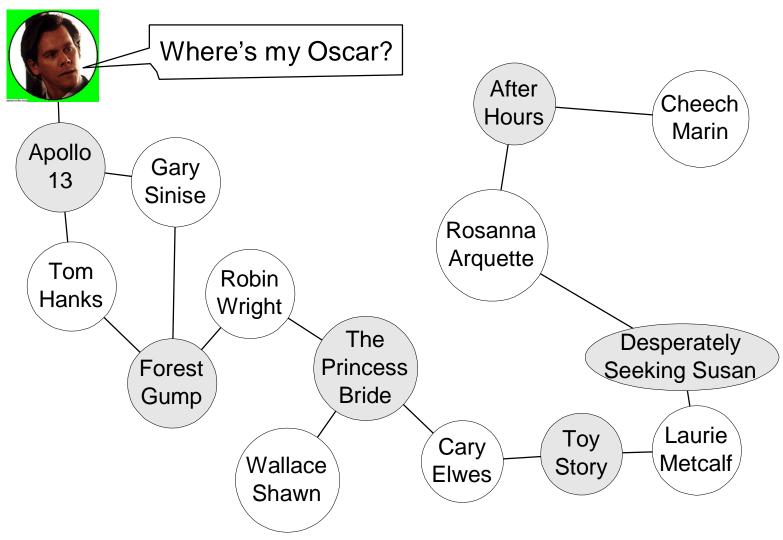
Traffic Flow on Highways

Nodes = cities Edges = # vehicles on connecting highway

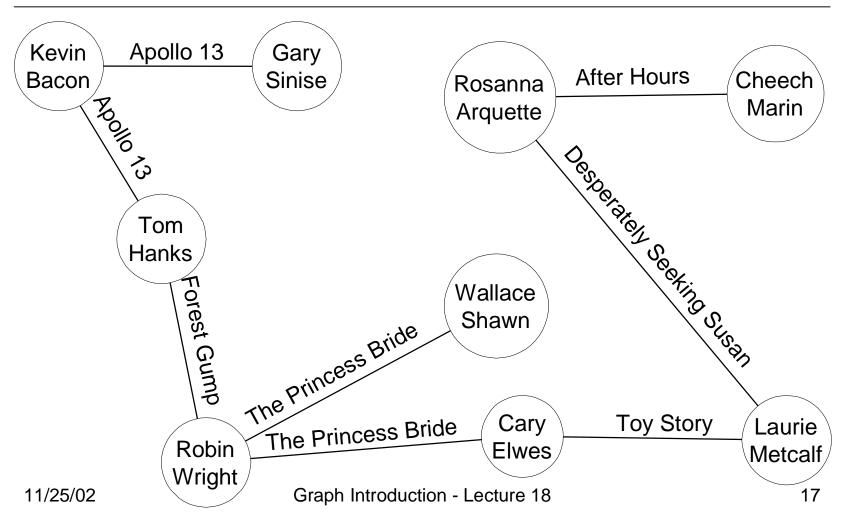
Soap Opera Relationships



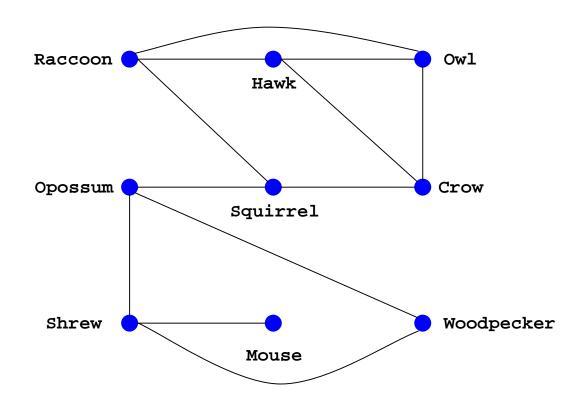
Six Degrees of Separation from Kevin Bacon



Six Degrees of Separation from Kevin Bacon



Niche overlaps



Graph Definition

- A graph is simply a collection of nodes plus edges
 - Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
 - V is a set of vertices or nodes
 - E is a set of edges that connect vertices

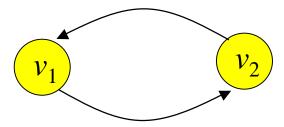
Graph Example

- Here is a directed graph G = (V, E)
 - > Each <u>edge</u> is a pair (v_1, v_2) , where v_1, v_2 are vertices in V

V = {A, B, C, D, E, F} E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)} B
C
F

Directed vs Undirected Graphs

 If the order of edge pairs (v₁, v₂) matters, the graph is directed (also called a digraph): (v₁, v₂) ≠ (v₂, v₁)

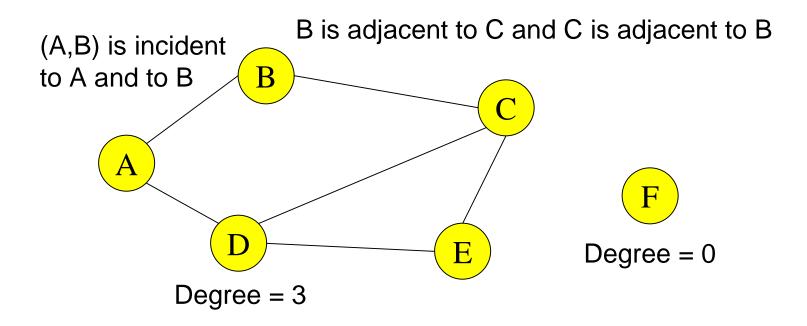


• If the order of edge pairs (v_1, v_2) does not matter, the graph is called an undirected graph: in this case, $(v_1, v_2) = (v_2, v_1)$

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if {u,v} is an edge in G
 - edge e = {u,v} is incident with vertex u and vertex
- The degree of a vertex in an undirected graph is the number of edges incident with it
 - a self-loop counts twice (both ends count)
 - denoted with deg(v)

Undirected Terminology

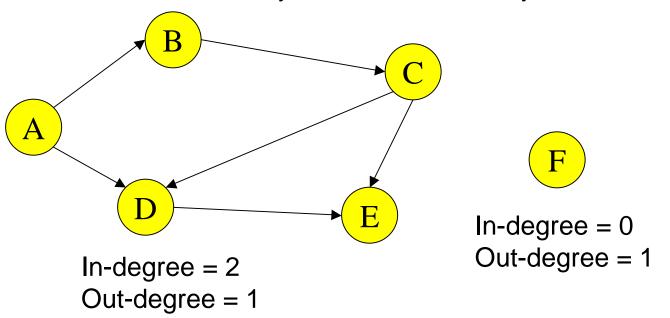


Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an edge in G
 - vertex u is the initial vertex of (u,v)
- Vertex v is adjacent from vertex u
 - vertex v is the terminal (or end) vertex of (u,v)
- Degree
 - in-degree is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex

Directed Terminology

B adjacent to C and C adjacent from B



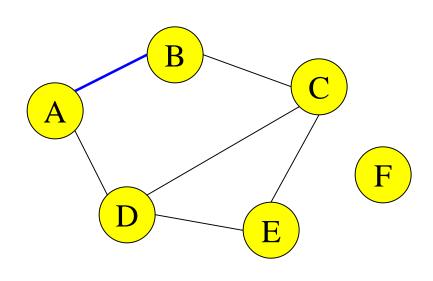
Handshaking Theorem

- Let G=(V,E) be an undirected graph with |E|=e edges
- Then $2e = \sum deg(v)$
- Every edge contributes +1 to the degree of each of the two vertices it is incident with
 - number of edges is exactly half the sum of deg(v)
 - > the sum of the deg(v) values must be even

Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices = |V| and
 - Number of edges = |E|
- There are at least two ways of representing graphs:
 - The adjacency matrix representation
 - The adjacency list representation

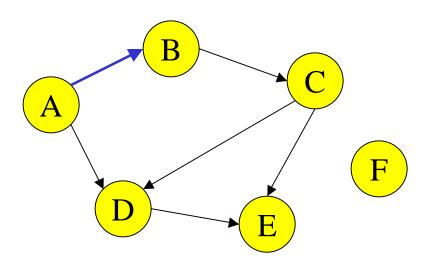
Adjacency Matrix



$$M(v, w) = \begin{cases} 1 & \text{if } (v, w) \text{ is in E} \\ 0 & \text{otherwise} \end{cases}$$

Space =
$$|V|^2$$

Adjacency Matrix for a Digraph



$$M(v, w) = \begin{cases} 1 & \text{if } (v, w) \text{ is in E} \\ 0 & \text{otherwise} \end{cases}$$

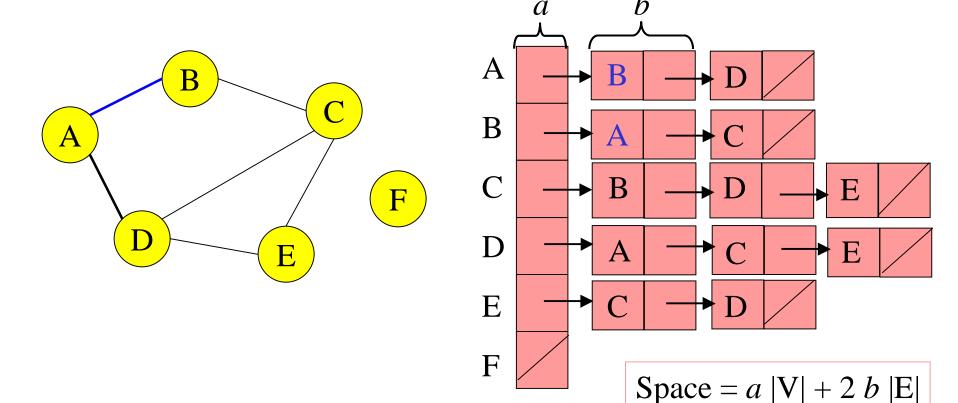
	. A	В					
A	0	0	0	1	0	0	
В	0	0	1	0	0	0	
		0				0	
		0			1	0	
Е	0	0	0	0	0	0	
F	0	0	0	0	0	0	

Space =
$$|V|^2$$

 \mathbf{L}

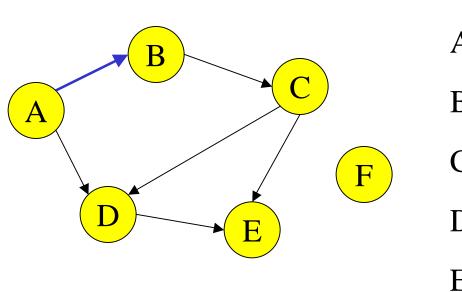
Adjacency List

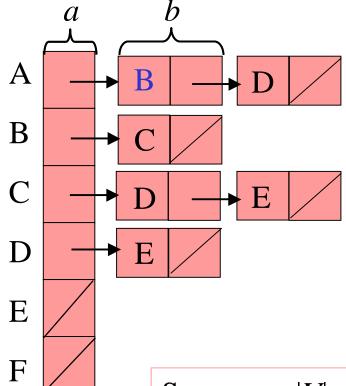
For each v in V, L(v) = list of w such that (v, w) is in E



Adjacency List for a Digraph

For each v in V, L(v) = list of w such that (v, w) is in E

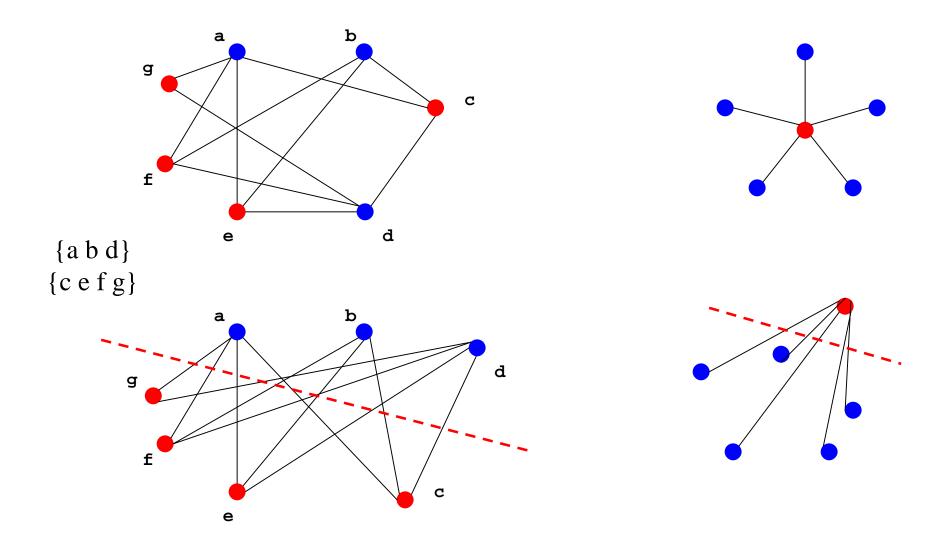




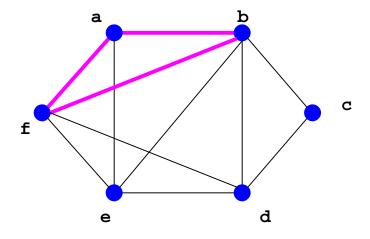
Bipartite

- A simple graph is bipartite if:
 - its vertex set V can be partitioned into two disjoint non-empty sets such that
 - every edge in the graph connects a vertex in one set to a vertex in the other set
 - which also means that no edge connects a vertex in one set to another vertex in the same set
 - no triangular or other odd length cycles

Bipartite examples



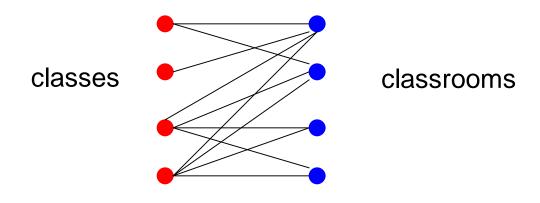
Bipartite example - not



a says that b and f should be in S_2 , but b says a and f should be in S_1 . TILT!

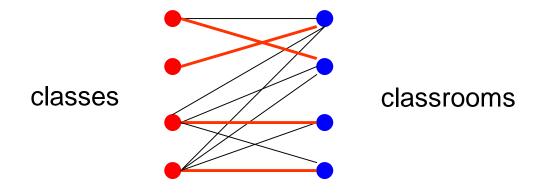
Bipartite Graph Application

- Classroom scheduling
 - Nodes are Classrooms and Classes
 - Edge between a classroom and class if the class will fit in the classroom and has the right technology.



Matching Problem

 Find an assignment of classes to classrooms so that every class fits and has the right technology.



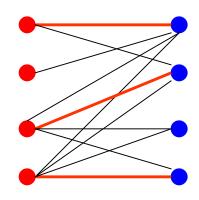
Steps in Solving the Problem

- Abstract the problem as a graph problem.
- Find an algorithm for solving the graph problem.
- Design data structures and algorithms to implement the graph solution.
- Write code

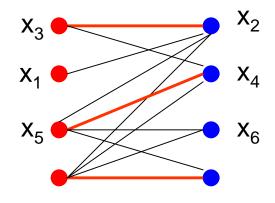
Alternating Path

- Let G = (U,V,E) be a bipartite graph where (u,v) in E only if u in U and v in V.
- A partial matching M is subset of E such that if (u,v) and (u',v') in M then either (u = u' and v = v') or (u ≠ u' or v ≠ v')
- An alternating path is x₁,x₂,...,x_{2n} such that
 - \rightarrow (x_i, x_{i+1}) in E M if i is odd
 - (x_i, x_{i+1}) in M if i is even
 - x₁ and x_{2n} are not matched in the partial matching

Partial Matching



Alternating Path

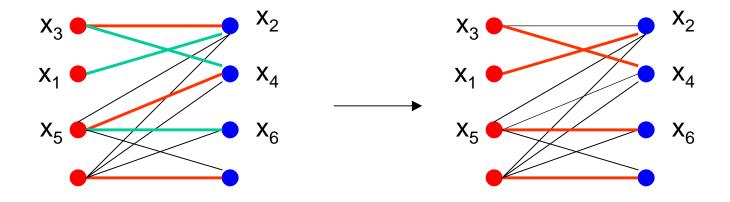


Matching Algorithm

```
set M to be the empty set initially repeat find an alternating path x_1, x_2, \ldots, x_{2n} // (x_i, x_{i+1}) in E - M if i is odd and (x_i, x_{i+1}) in M if i is even neither x_1 nor x_{2n} matched // delete (x_i, x_{i+1}) from M if i is even add (x_i, x_{i+1}) to M if i is odd until no alternating path can be found
```

if M has every vertex of U then M is a matching if M does not have some vertex then there is complete matching, but M is a maximum size matching

One step in the Algorithm



Maximum Matching

- Prove that M is maximum size if and only if there is no alternating path.
- Design data structures algorithms to find alternating paths or determine they don't exist.
 - › Goal: fast data structures and algorithms