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Graph Introduction

CSE 373
Data Structures

Lecture 18
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Reading

• Reading 
› Section 9.1
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What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of 
“graph”
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Graphs 

• Graphs are composed of
› Nodes (vertices)
› Edges node

edge
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Varieties

• Nodes
› Labeled or unlabeled

• Edges
› Directed or undirected
› Labeled or unlabeled
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Motivation for Graphs
• Consider the data structures we have 

looked at so far…
• Linked list: nodes with 1 incoming 

edge + 1 outgoing edge
• Binary trees/heaps: nodes with 1 

incoming edge + 2 outgoing edges
• Binomial trees/B-trees: nodes with 1 

incoming edge + multiple outgoing 
edges

• Up-trees: nodes with multiple 
incoming edges +  1 outgoing edge a
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Motivation for Graphs

• What is common among these data 
structures?

• How can you generalize them?
• Consider data structures for representing 

the following problems…
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CSE Course Prerequisites at 
UW

321143

142

322

326

341370

378

401

421Nodes = courses
Directed edge = prerequisite
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Representing a Maze

F

Nodes = rooms
Edge = door or passage

F

B

B

B
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Representing Electrical 
Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor
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Program statements

x1=q+y*z
x2=y*z-q

Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice

11/25/02 Graph Introduction - Lecture 18 12

Precedence
S1 a=0;

S2 b=1;

S3 c=a+1

S4 d=b+a;

S5 e=d+1;

S6 e=c+d;

3

1 2

6

5

4Which statements must execute before S6?

S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements
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Information Transmission in a 
Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181
30

16

56
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Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on 
connecting highway

UW
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Soap Opera Relationships

Victor

Ashley

Brad

Michelle

Wayne

Trisha
Peter

Six Degrees of Separation 
from Kevin Bacon 

Kevin
Bacon

Apollo
13

Tom
Hanks

Gary
Sinise

Forest
Gump

Robin
Wright

The
Princess

Bride

Wallace
Shawn

Cary
Elwes

Toy
Story

Laurie
Metcalf

Rosanna
Arquette

Desperately
Seeking Susan

After
Hours Cheech

Marin

Where’s my Oscar?
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Six Degrees of Separation 
from Kevin Bacon

Apollo 13

Apollo 13

F
orest G

um
p

The Princess Bride

The Princess Bride Toy Story

Desperately Seeking Susan

After Hours
Kevin
Bacon

Tom
Hanks

Gary
Sinise

Robin
Wright

Wallace
Shawn

Cary
Elwes

Laurie
Metcalf

Rosanna
Arquette

Cheech
Marin
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Niche overlaps

Raccoon
Hawk

Owl

Opossum
Squirrel

Crow

Shrew

Mouse

Woodpecker
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Graph Definition

• A graph is simply a collection of nodes plus 
edges
› Linked lists, trees, and heaps are all special cases 

of graphs

• The nodes are known as vertices (node = 
“vertex”)

• Formal Definition: A graph G is a pair (V, E) 
where
› V is a set of vertices or nodes
› E is a set of edges that connect vertices
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Graph Example

• Here is a directed graph G = (V, E)
› Each edge is a pair (v1, v2), where v1, v2 are vertices 

in V
V = {A, B, C, D, E, F}
E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED

F
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Directed vs Undirected 
Graphs

• If the order of edge pairs (v1, v2) matters, the graph is 
directed (also called a digraph): (v1, v2) � (v2, v1) 

• If the order of edge pairs (v1, v2) does not matter, the 
graph is called an undirected graph: in this case, (v1, 
v2) = (v2, v1) 

v1
v2

v1
v2
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Undirected Terminology

• Two vertices u and v are adjacent in an 
undirected graph G if {u,v} is an edge in G
› edge e = {u,v} is incident with vertex u and vertex 

v

• The degree of a vertex in an undirected graph 
is the number of edges incident with it
› a self-loop counts twice (both ends count)

› denoted with deg(v)
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Undirected Terminology

A

B
C

ED

F

Degree = 3

Degree = 0

B is adjacent to C and C is adjacent to B
(A,B) is incident
to A and to B
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Directed Terminology

• Vertex u is adjacent to vertex v in a directed 
graph G if (u,v) is an edge in G
› vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
› vertex v is the terminal (or end) vertex of (u,v)

• Degree
› in-degree is the number of edges with the vertex 

as the terminal vertex
› out-degree is the number of edges with the vertex 

as the initial vertex
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Directed Terminology

A

B
C

ED

F

In-degree = 2
Out-degree = 1

In-degree = 0
Out-degree = 1

B adjacent to C and C adjacent from B
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Handshaking Theorem

• Let G=(V,E) be an undirected graph with 
|E|=e edges

• Then
• Every edge contributes +1 to the degree of 

each of the two vertices it is incident with 
› number of edges is exactly half the sum of deg(v)

› the sum of the deg(v) values must be even

�
�

�
Vv

deg(v)2e
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• Space and time are analyzed in terms of:

• Number of vertices = |V|   and

• Number of edges = |E|

• There are at least two ways of representing 
graphs:

• The  adjacency matrix representation

• The  adjacency list representation

Graph Representations
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A     B     C     D     E     F

0      1      0      1      0     0     

1      0      1      0      0     0     

0      1      0      1      1     0     

1      0      1      0      1     0     

0      0      1      1      0     0     

0      0      0      0      0     0     M(v, w)  = 
1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

ED
F

Adjacency Matrix
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A     B     C     D     E     F

0      1      0      1      0     0     

0      0      1      0      0     0     

0      0      0      1      1     0     

0      0      0      0      1     0     

0      0      0      0      0     0     

0      0      0      0      0     0     

A

B

C

D

E

F

Space = |V|2

M(v, w)  = 
1 if (v, w) is in E

0 otherwise

A

B
C

ED
F

Adjacency Matrix for a 
Digraph
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B D

B D

C

A C E

D

E

A C

A

B

C

D

E

F

A

B
C

ED
F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b

Adjacency List



6

11/25/02 Graph Introduction - Lecture 18 31

B D

E

D

C

a b

A

B

C

D

E

F

E

A

B
C

ED
F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|

Adjacency List for a Digraph
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Bipartite

• A simple graph is bipartite if:
› its vertex set V can be partitioned into two 

disjoint non-empty sets such that
• every edge in the graph connects a vertex in 

one set to a vertex in the other set

• which also means that no edge connects a 
vertex in one set to another vertex in the same 
set

› no triangular or other odd length cycles

Bipartite examples

g

c

a b

f

de
{a b d}

{c e f g}

g

c

a b

f

d

e
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Bipartite example - not

c

a b

f

de

a says that b and f should be in S2,
but b says a and f should be in S1.
TILT!
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Bipartite Graph Application

• Classroom scheduling
› Nodes are Classrooms and Classes
› Edge between a classroom and class if the class 

will fit in the classroom and has the right 
technology.

classes classrooms
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Matching Problem

• Find an assignment of classes to classrooms 
so that every class fits and has the right 
technology.

classes classrooms
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Steps in Solving the Problem

• Abstract the problem as a graph 
problem.

• Find an algorithm for solving the graph 
problem.

• Design data structures and algorithms 
to implement the graph solution.

• Write code
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Alternating Path

• Let G = (U,V,E) be a bipartite graph where 
(u,v) in E only if u in U and v in V.

• A partial matching M is subset of E such that 
if (u,v) and (u’,v’) in M then either (u = u’ and 
v = v’) or (u � u’ or v � v’ )

• An alternating path is x1,x2,…,x2n such that 
› (xi,xi+1) in E – M if i is odd 
› (xi,xi+1) in M if i is even
› x1 and x2n  are not matched in the partial matching
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Partial Matching

M
E-M
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Alternating Path

M
E-M

x1

x2x3

x4

x5 x6
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Matching Algorithm

set M to be the empty set initially
repeat

find an alternating path x1,x2,…,x2n
// (xi,xi+1) in E – M if i is odd and (xi,xi+1) in M if i is even

neither x1 nor x2n matched //
delete (xi,xi+1) from M if i is even
add (xi,xi+1) to M if i is odd

until no alternating path can be found

if M has every vertex of U then M is a matching
if M does not have some vertex then there is complete
matching, but M is a maximum size matching
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One step in the Algorithm

x1

x2x3

x4

x5 x6

x1

x2x3

x4

x5 x6
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Maximum Matching

• Prove that M is maximum size if and 
only if there is no alternating path.

• Design data structures algorithms to 
find alternating paths or determine they 
don’t exist.  
› Goal: fast data structures and algorithms


