

Motivation for Graphs

- What is common among these data structures?
- How can you generalize them?
- Consider data structures for representing the following problems...

Graph Definition

- A graph is simply a collection of nodes plus edges
, Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
, V is a set of vertices or nodes , E is a set of edges that connect vertices

Directed vs Undirected

 Graphs- If the order of edge pairs $\left(v_{1}, v_{2}\right)$ matters, the graph is directed (also called a digraph): $\left(v_{1}, v_{2}\right) \neq\left(v_{2}, v_{1}\right)$

- If the order of edge pairs $\left(v_{1}, v_{2}\right)$ does not matter, the graph is called an undirected graph: in this case, (v_{1}, $\left.v_{2}\right)=\left(v_{2}, v_{1}\right)$

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if $\{u, v\}$ is an edge in G
, edge $e=\{u, v\}$ is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
, a self-loop counts twice (both ends count)
, denoted with $\operatorname{deg}(\mathrm{v})$

11/25/02
Graph Introduction - Lecture 18

Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u, v) is an edge in G
, vertex u is the initial vertex of (u, v)
- Vertex v is adjacent from vertex u
, vertex v is the terminal (or end) vertex of (u, v)
- Degree
, in-degree is the number of edges with the vertex as the terminal vertex
, out-degree is the number of edges with the vertex as the initial vertex

Handshaking Theorem

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an undirected graph with |E|=e edges
- Then $2 e=\sum_{v \in v} \operatorname{deg}(v)$
- Every edge contributes +1 to the degree of each of the two vertices it is incident with
, number of edges is exactly half the sum of deg(v)
, the sum of the deg(v) values must be even

Graph Representations

- Space and time are analyzed in terms of:
- Number of vertices $=|V|$ and
- Number of edges $=|E|$
- There are at least two ways of representing graphs:
- The adjacency matrix representation
- The adjacency list representation

[^0]Graph Introduction - Lecture 18
27

Adjacency Matrix

Bipartite

- A simple graph is bipartite if:
, its vertex set V can be partitioned into two disjoint non-empty sets such that
- every edge in the graph connects a vertex in one set to a vertex in the other set
- which also means that no edge connects a vertex in one set to another vertex in the same set
, no triangular or other odd length cycles

Bipartite Graph Application

- Classroom scheduling
, Nodes are Classrooms and Classes
, Edge between a classroom and class if the class will fit in the classroom and has the right technology.

Steps in Solving the Problem

- Abstract the problem as a graph problem.
- Find an algorithm for solving the graph problem.
- Design data structures and algorithms to implement the graph solution.
- Write code

-

One step in the Algorithm

Maximum Matching

- Prove that M is maximum size if and only if there is no alternating path.
- Design data structures algorithms to find alternating paths or determine they don't exist.
, Goal: fast data structures and algorithms

[^0]: 11/25/02

