
1

Graph Introduction

CSE 373
Data Structures

Lecture 18

11/25/02 Graph Introduction - Lecture 18 2

Reading

• Reading
› Section 9.1

11/25/02 Graph Introduction - Lecture 18 3

What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of
“graph”

11/25/02 Graph Introduction - Lecture 18 4

Graphs

• Graphs are composed of
› Nodes (vertices)
› Edges node

edge

11/25/02 Graph Introduction - Lecture 18 5

Varieties

• Nodes
› Labeled or unlabeled

• Edges
› Directed or undirected
› Labeled or unlabeled

11/25/02 Graph Introduction - Lecture 18 6

Motivation for Graphs
• Consider the data structures we have

looked at so far…
• Linked list: nodes with 1 incoming

edge + 1 outgoing edge
• Binary trees/heaps: nodes with 1

incoming edge + 2 outgoing edges
• Binomial trees/B-trees: nodes with 1

incoming edge + multiple outgoing
edges

• Up-trees: nodes with multiple
incoming edges + 1 outgoing edge a

gd b

10

96 99

94

97

Value Next
node

Value Next
node

2

11/25/02 Graph Introduction - Lecture 18 7

Motivation for Graphs

• What is common among these data
structures?

• How can you generalize them?
• Consider data structures for representing

the following problems…

11/25/02 Graph Introduction - Lecture 18 8

CSE Course Prerequisites at
UW

321143

142

322

326

341370

378

401

421Nodes = courses
Directed edge = prerequisite

11/25/02 Graph Introduction - Lecture 18 9

Representing a Maze

F

Nodes = rooms
Edge = door or passage

F

B

B

B

11/25/02 Graph Introduction - Lecture 18 10

Representing Electrical
Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor

11/25/02 Graph Introduction - Lecture 18 11

Program statements

x1=q+y*z
x2=y*z-q

Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice

11/25/02 Graph Introduction - Lecture 18 12

Precedence
S1 a=0;

S2 b=1;

S3 c=a+1

S4 d=b+a;

S5 e=d+1;

S6 e=c+d;

3

1 2

6

5

4Which statements must execute before S6?

S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements

3

11/25/02 Graph Introduction - Lecture 18 13

Information Transmission in a
Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181
30

16

56

11/25/02 Graph Introduction - Lecture 18 14

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on
connecting highway

UW

11/25/02 Graph Introduction - Lecture 18 15

Soap Opera Relationships

Victor

Ashley

Brad

Michelle

Wayne

Trisha
Peter

Six Degrees of Separation
from Kevin Bacon

Kevin
Bacon

Apollo
13

Tom
Hanks

Gary
Sinise

Forest
Gump

Robin
Wright

The
Princess

Bride

Wallace
Shawn

Cary
Elwes

Toy
Story

Laurie
Metcalf

Rosanna
Arquette

Desperately
Seeking Susan

After
Hours Cheech

Marin

Where’s my Oscar?

11/25/02 Graph Introduction - Lecture 18 17

Six Degrees of Separation
from Kevin Bacon

Apollo 13

Apollo 13

F
orest G

um
p

The Princess Bride

The Princess Bride Toy Story

Desperately Seeking Susan

After Hours
Kevin
Bacon

Tom
Hanks

Gary
Sinise

Robin
Wright

Wallace
Shawn

Cary
Elwes

Laurie
Metcalf

Rosanna
Arquette

Cheech
Marin

11/25/02 Graph Introduction - Lecture 18 18

Niche overlaps

Raccoon
Hawk

Owl

Opossum
Squirrel

Crow

Shrew

Mouse

Woodpecker

4

11/25/02 Graph Introduction - Lecture 18 19

Graph Definition

• A graph is simply a collection of nodes plus
edges
› Linked lists, trees, and heaps are all special cases

of graphs

• The nodes are known as vertices (node =
“vertex”)

• Formal Definition: A graph G is a pair (V, E)
where
› V is a set of vertices or nodes
› E is a set of edges that connect vertices

11/25/02 Graph Introduction - Lecture 18 20

Graph Example

• Here is a directed graph G = (V, E)
› Each edge is a pair (v1, v2), where v1, v2 are vertices

in V
V = {A, B, C, D, E, F}
E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED

F

11/25/02 Graph Introduction - Lecture 18 21

Directed vs Undirected
Graphs

• If the order of edge pairs (v1, v2) matters, the graph is
directed (also called a digraph): (v1, v2) � (v2, v1)

• If the order of edge pairs (v1, v2) does not matter, the
graph is called an undirected graph: in this case, (v1,
v2) = (v2, v1)

v1
v2

v1
v2

11/25/02 Graph Introduction - Lecture 18 22

Undirected Terminology

• Two vertices u and v are adjacent in an
undirected graph G if {u,v} is an edge in G
› edge e = {u,v} is incident with vertex u and vertex

v

• The degree of a vertex in an undirected graph
is the number of edges incident with it
› a self-loop counts twice (both ends count)

› denoted with deg(v)

11/25/02 Graph Introduction - Lecture 18 23

Undirected Terminology

A

B
C

ED

F

Degree = 3

Degree = 0

B is adjacent to C and C is adjacent to B
(A,B) is incident
to A and to B

11/25/02 Graph Introduction - Lecture 18 24

Directed Terminology

• Vertex u is adjacent to vertex v in a directed
graph G if (u,v) is an edge in G
› vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
› vertex v is the terminal (or end) vertex of (u,v)

• Degree
› in-degree is the number of edges with the vertex

as the terminal vertex
› out-degree is the number of edges with the vertex

as the initial vertex

5

11/25/02 Graph Introduction - Lecture 18 25

Directed Terminology

A

B
C

ED

F

In-degree = 2
Out-degree = 1

In-degree = 0
Out-degree = 1

B adjacent to C and C adjacent from B

11/25/02 Graph Introduction - Lecture 18 26

Handshaking Theorem

• Let G=(V,E) be an undirected graph with
|E|=e edges

• Then
• Every edge contributes +1 to the degree of

each of the two vertices it is incident with
› number of edges is exactly half the sum of deg(v)

› the sum of the deg(v) values must be even

�
�

�
Vv

deg(v)2e

11/25/02 Graph Introduction - Lecture 18 27

• Space and time are analyzed in terms of:

• Number of vertices = |V| and

• Number of edges = |E|

• There are at least two ways of representing
graphs:

• The adjacency matrix representation

• The adjacency list representation

Graph Representations

11/25/02 Graph Introduction - Lecture 18 28

A B C D E F

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0 M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

ED
F

Adjacency Matrix

11/25/02 Graph Introduction - Lecture 18 29

A B C D E F

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

A

B

C

D

E

F

Space = |V|2

M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B
C

ED
F

Adjacency Matrix for a
Digraph

11/25/02 Graph Introduction - Lecture 18 30

B D

B D

C

A C E

D

E

A C

A

B

C

D

E

F

A

B
C

ED
F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b

Adjacency List

6

11/25/02 Graph Introduction - Lecture 18 31

B D

E

D

C

a b

A

B

C

D

E

F

E

A

B
C

ED
F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|

Adjacency List for a Digraph

11/25/02 Graph Introduction - Lecture 18 32

Bipartite

• A simple graph is bipartite if:
› its vertex set V can be partitioned into two

disjoint non-empty sets such that
• every edge in the graph connects a vertex in

one set to a vertex in the other set

• which also means that no edge connects a
vertex in one set to another vertex in the same
set

› no triangular or other odd length cycles

Bipartite examples

g

c

a b

f

de
{a b d}

{c e f g}

g

c

a b

f

d

e
11/25/02 Graph Introduction - Lecture 18 34

Bipartite example - not

c

a b

f

de

a says that b and f should be in S2,
but b says a and f should be in S1.
TILT!

11/25/02 Graph Introduction - Lecture 18 35

Bipartite Graph Application

• Classroom scheduling
› Nodes are Classrooms and Classes
› Edge between a classroom and class if the class

will fit in the classroom and has the right
technology.

classes classrooms

11/25/02 Graph Introduction - Lecture 18 36

Matching Problem

• Find an assignment of classes to classrooms
so that every class fits and has the right
technology.

classes classrooms

7

11/25/02 Graph Introduction - Lecture 18 37

Steps in Solving the Problem

• Abstract the problem as a graph
problem.

• Find an algorithm for solving the graph
problem.

• Design data structures and algorithms
to implement the graph solution.

• Write code

11/25/02 Graph Introduction - Lecture 18 38

Alternating Path

• Let G = (U,V,E) be a bipartite graph where
(u,v) in E only if u in U and v in V.

• A partial matching M is subset of E such that
if (u,v) and (u’,v’) in M then either (u = u’ and
v = v’) or (u � u’ or v � v’)

• An alternating path is x1,x2,…,x2n such that
› (xi,xi+1) in E – M if i is odd
› (xi,xi+1) in M if i is even
› x1 and x2n are not matched in the partial matching

11/25/02 Graph Introduction - Lecture 18 39

Partial Matching

M
E-M

11/25/02 Graph Introduction - Lecture 18 40

Alternating Path

M
E-M

x1

x2x3

x4

x5 x6

11/25/02 Graph Introduction - Lecture 18 41

Matching Algorithm

set M to be the empty set initially
repeat

find an alternating path x1,x2,…,x2n
// (xi,xi+1) in E – M if i is odd and (xi,xi+1) in M if i is even

neither x1 nor x2n matched //
delete (xi,xi+1) from M if i is even
add (xi,xi+1) to M if i is odd

until no alternating path can be found

if M has every vertex of U then M is a matching
if M does not have some vertex then there is complete
matching, but M is a maximum size matching

11/25/02 Graph Introduction - Lecture 18 42

One step in the Algorithm

x1

x2x3

x4

x5 x6

x1

x2x3

x4

x5 x6

8

11/25/02 Graph Introduction - Lecture 18 43

Maximum Matching

• Prove that M is maximum size if and
only if there is no alternating path.

• Design data structures algorithms to
find alternating paths or determine they
don’t exist.
› Goal: fast data structures and algorithms

