
Shortest Paths

CSE 373
Data Structures

Lecture 21

12/4/02 Shortest Paths - Lecture 21 2

Readings and References

• Reading
› Section 9.3 , Section 10.3.4

Some slides based on: CSE 326 by S. Wolfman, 2000

12/4/02 Shortest Paths - Lecture 21 3

Path

• A path is a list of vertices { v1, v2, …, vn}
such that (v i , v i +1) is in E for all 0 ���� i <
n.

Seattle

San Francisco

Dallas

Chicago

Salt Lake City
p = {Seattle,
Salt Lake City,

Chicago,
Dallas,

San Francisco}

12/4/02 Shortest Paths - Lecture 21 4

Path cost and Path length
• Path cost: the sum of the costs of each edge
• Path length: the number of edges in the path

› Path length is the unweighted path cost (each edge
= 1)

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

3.5

2 2

2.5
3

2 2.5
2.5

length(p) = 5

cost(p) = 11.5

12/4/02 Shortest Paths - Lecture 21 5

Shortest Path Problems

• Given a graph G = (V, E) and a “source” vertex s
in V, find the minimum cost paths from s to every
vertex in V

• Many variations:
› unweighted vs. weighted
› cyclic vs. acyclic
› pos. weights only vs. pos. and neg. weights
› etc

12/4/02 Shortest Paths - Lecture 21 6

Why study shortest path
problems?

• Traveling on a budget: What is the cheapest
airline schedule from Seattle to city X?

• Optimizing routing of packets on the internet:
› Vertices are routers and edges are network links with

different delays. What is the routing path with
smallest total delay?

• Shipping: Find which highways and roads to
take to minimize total delay due to traffic

12/4/02 Shortest Paths - Lecture 21 7

Unweighted Shortest Path
Problem

Problem: Given a “source” vertex s in an unweighted
graph

G = (V,E), find the shortest path from s to all vertices in
G

A

C

B

D

F H

G

E

Source

12/4/02 Shortest Paths - Lecture 21 8

Breadth-First Search Solution

• Basic Idea: Starting at node s, find vertices
that can be reached using 0, 1, 2, 3, …, N-1
edges (works even for cyclic graphs!)

A

C

B

D

F H

G

E

12/4/02 Shortest Paths - Lecture 21 9

Breadth-First Search
Algorithm

• Uses a queue to track vertices that are “nearby”
• source vertex is s

Distance[s] := 0

Enqueue(Q,s); Mark(s)

while queue is not empty do

X := Dequeue(Q);

for each vertex Y adjacent to X do

if Y is unmarked then

Distance[Y] := Distance[X] + 1;

Previous[Y] := X;

Enqueue(Q,Y); Mark(Y);

• Running time = O(|V| + |E|)

12/4/02 Shortest Paths - Lecture 21 10

Shortest Path

A

C

B

D

F H

G

E

0

Q = C

12/4/02 Shortest Paths - Lecture 21 11

Shortest Path

A

C

B

D

F H

G

E

0

Q = A D E

1

1

1

Previous
pointer

12/4/02 Shortest Paths - Lecture 21 12

Shortest Path

A

C

B

D

F H

G

E

0

Q = D E B

1

1

1

2

12/4/02 Shortest Paths - Lecture 21 13

Shortest Path

A

C

B

D

F H

G

E

0

Q = B G

1

1

1

2

2

12/4/02 Shortest Paths - Lecture 21 14

Shortest Path

A

C

B

D

F H

G

E

0

Q = F

1

1

1

2

2

3

12/4/02 Shortest Paths - Lecture 21 15

Shortest Path

A

C

B

D

F H

G

E

0

Q = H

1

1

1

2

2

3 4

12/4/02 Shortest Paths - Lecture 21 16

What if edges have weights?

• Breadth First Search does not work anymore
› minimum cost path may have more edges than

minimum length path

A

C

B

D

F H

G

E

2 3

2
1

1

4

2

1
1

93

8

3

Shortest path from
C to A:
Cà A (cost = 9)

Minimum Cost
Path = Cà Eà Dà A
(cost = 8)

12/4/02 Shortest Paths - Lecture 21 17

Dijkstra’s Algorithm for
Weighted Shortest Path

• Classic algorithm for solving shortest
path in weighted graphs (without
negative weights)

• A greedy algorithm (irrevocably makes
decisions without considering future
consequences)

• Each vertex has a cost for path from
initial vertex

12/4/02 Shortest Paths - Lecture 21 18

Dijkstra’s Shortest Path
Algorithm

• Initialize the cost of s to 0, and all the rest of the
nodes to �

• Initialize set S to be �
› S is the set of nodes to which we have a shortest path

• While S is not all vertices
› Select the node A with the lowest cost that is not in S

and identify the node as now being in S
› for each node B adjacent to A

• if cost(A)+cost(A,B) < B’s currently known cost
– set cost(B) = cost(A)+cost(A,B)
– set previous(B) = A so that we can remember the path

12/4/02 Shortest Paths - Lecture 21 19

A weighted directed graph

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 �

� �

�

Pick vertex not in S with lowest cost.

� �

12/4/02 Shortest Paths - Lecture 21 20

A weighted directed graph

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

� �

1

Update neighbors

� �

12/4/02 Shortest Paths - Lecture 21 21

A weighted directed graph

Pick vertex not in S with lowest cost

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

� �

1

� �

12/4/02 Shortest Paths - Lecture 21 22

A weighted directed graph

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

Update neighbors

12/4/02 Shortest Paths - Lecture 21 23

A weighted directed graph

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost and update neighbors

9 5

12/4/02 Shortest Paths - Lecture 21 24

A weighted directed graph

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost and update neighbors

9 5

12/4/02 Shortest Paths - Lecture 21 25

A weighted directed graph

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost and update neighbors

8 5

12/4/02 Shortest Paths - Lecture 21 26

A weighted directed graph

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost and update neighbors

6 5

12/4/02 Shortest Paths - Lecture 21 27

A weighted directed graph

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost and update neighbors

6 5

12/4/02 Shortest Paths - Lecture 21 28

Data Structures

• Adjacency Lists

1
2
3
4
5
6
7

2 2

G
0
�

�

�

�

�

�

C

4 1

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

4 3 5 10
1 4 6 5
3 2 5 2
7 6

6 1

6 8

7 4

next
cost

adj

Priority queue for finding finding and deleting lowest cost vertex
and for decreasing costs (Binary Heap works)

P Q

previous cost queue pointers

12/4/02 Shortest Paths - Lecture 21 29

Priority Queue

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

� �

1

� �

2

5 7

3 6

0
2
�

1
�

�

�

C

1
4

2
5
3

Q
1
2
3
4
5
6
7

node number
1

2 3

54

index in heap

1

1

Before the update, but
after find min.

12/4/02 Shortest Paths - Lecture 21 30

Priority Queue

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 �

1

� �

2

5 7

3 6

0
2
3
1
�

�

�

C

1
4

2
5
3

Q
1
2
3
4
5
6
7

node number
1

2 3

54

index in heap

1
4
1

update node 3

decrease
cost

12/4/02 Shortest Paths - Lecture 21 31

Priority Queue

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

0 2

3 �

1

� �

2

3 7

5 6

0
2
3
1
�

�

�

C

1
2

4
5
3

Q
1
2
3
4
5
6
7

node number
1

2 3

54

index in heap

1
4
1

percolate up

12/4/02 Shortest Paths - Lecture 21 32

Time Complexity

• n vertices and m edges
• Initialize data structures O(n+m)
• Find min cost vertices O(n log n)

› n delete mins

• Update costs O(m log n)
› Potentially m updates

• Update previous pointers O(m)
› Potentially m updates

• Total time O((n + m) log n) - very fast.

12/4/02 Shortest Paths - Lecture 21 33

Does It Always Work?

• Dijkstra’s algorithm is an example of a greedy
algorithm

• Greedy algorithms always make choices that
currently seem the best
› Short-sighted – no consideration of long-term or global

issues
› Locally optimal does not always mean globally optimal

• In Dijkstra’s case – choose the least cost node,
but what if there is another path through other
vertices that is cheaper?

12/4/02 Shortest Paths - Lecture 21 34

THE KNOWN
CLOUD

G Next shortest path from
inside the known cloud

P

“Cloudy” Proof

• If the path to G is the next shortest path, the path to P must be
at least as long. Therefore, any path through P to G cannot be
shorter!

Source

Least cost node

12/4/02 Shortest Paths - Lecture 21 35

Inside the Cloud (Proof)

• Everything inside the cloud has the correct
shortest path

• Proof is by induction on the number of nodes
in the cloud:
› Base case: Initial cloud is just the source with

shortest path 0
› Inductive hypothesis: cloud of k-1 nodes all have

shortest paths
› Inductive step: choose the least cost node G à

has to be the shortest path to G (previous slide).
Add k-th node G to the cloud

12/4/02 Shortest Paths - Lecture 21 36

All Pairs Shortest Path

• Given a edge weighted directed graph G =
(V,E) find for all u,v in V the length of the
shortest path from u to v. Use matrix
representation.

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

1 2 3 4 5 6 7
1 0 2 : 1 : : :
2 : 0 : 3 10 : :
3 4 : 0 : : 5 :
4 : : 2 0 2 8 4
5 : : : : 0 : 6
6 : : : : : 0 :
7 : : : : : 1 0

C

: = infinity

12/4/02 Shortest Paths - Lecture 21 37

Matrix Representation

• C[i,j] = the cost of the edge (i,j)
› C[i,i] = 0 because no cost to stay where you are
› C[i,j] = infinity (:) if no edge from i to j.

1 2 3 4 5 6 7
1 0 2 : 1 : : :
2 : 0 : 3 10 : :
3 4 : 0 : : 5 :
4 : : 2 0 2 8 4
5 : : : : 0 : 6
6 : : : : : 0 :
7 : : : : : 1 0

C

12/4/02 Shortest Paths - Lecture 21 38

Floyd – Warshall Algorithm

All_Pairs_Shortest_Path {
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

C[i,j] := min(C[i,j], C[i,k] + C[k,j]);
}

Note x + : = : by definition

On termination C[i,j] is the length of the shortest path from i to j.

12/4/02 Shortest Paths - Lecture 21 39

The Computation

1 2 3 4 5 6 7
1 0 2 : 1 : : :
2 : 0 : 3 10 : :
3 4 : 0 : : 5 :
4 : : 2 0 2 8 4
5 : : : : 0 : 6
6 : : : : : 0 :
7 : : : : : 1 0

C 1 2 3 4 5 6 7
1 0 2 3 1 3 6 5
2 9 0 5 3 5 8 7
3 4 6 0 5 4 5 6
4 6 8 2 0 2 5 4
5 : : : : 0 7 6
6 : : : : : 0 :
7 : : : : : 1 0

C

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

12/4/02 Shortest Paths - Lecture 21 40

Proof of Correctness

• After the k-th time through the loop C[i,j]
is the length of the shortest path that
only passes through vertices numbered
1,2,…,k.
› Let Ck[i,j] be C[i,j] after k time through the

loop.

• Base case: k = 0. C0[i,j] is the cost of
an edge that does not pass through any
vertices.

12/4/02 Shortest Paths - Lecture 21 41

Inductive Step

• Assume true for k-1.
› A shortest path from i to j that only goes

through vertices 1,2, …, k does not go
through vertex k at all.

• Ck[i,j] = Ck-1[i,j]

› All shortest paths from i to j that only goes
through vertices 1,2, …, k must go through
vertex k.

• Ck[i,j] = Ck-1[i,k] + Ck-1[k,j]

12/4/02 Shortest Paths - Lecture 21 42

Cloud Argument

Vertices numbered
1,2,…,k-1

k

i
j

Ck-1(i,k) Ck-1(k,j)

Ck(i,j)

12/4/02 Shortest Paths - Lecture 21 43

Time Complexity of All Pairs
Shortest Path

• n is the number of vertices
• Three nested loops. O(n3)

› Shortest paths can be found too (see the book).

• Repeated Dijkstra’s algorithm
› O(n(n +m)log n) (= O(n3 log n) for dense graphs).
› Run Dijkstra starting at each vertex.
› Dijkstra also gives the shortest paths not just their

lengths.

