Shortest Paths

CSE 373
Data Structures
Lecture 21

Readings and References

- Reading
, Section 9.3, Section 10.3.4

Some slides based on: CSE 326 by S. Wolfman, 2000

Path

- A path is a list of vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ such that ($\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+1}$) is in \mathbf{E} for all $0 \leq i<$ n.

Path cost and Path length

- Path cost: the sum of the costs of each edge
- Path length: the number of edges in the path
, Path length is the unweighted path cost (each edge =1)

Shortest Path Problems

- Given a graph $G=(V, E)$ and a "source" vertex s in V, find the minimum cost paths from s to every vertex in V
- Many variations:
, unweighted vs. weighted
, cyclic vs. acyclic
, pos. weights only vs. pos. and neg. weights
, etc

Why study shortest path problems?

- Traveling on a budget: What is the cheapest airline schedule from Seattle to city X?
- Optimizing routing of packets on the internet:
, Vertices are routers and edges are network links with different delays. What is the routing path with smallest total delay?
- Shipping: Find which highways and roads to take to minimize total delay due to traffic

Unweighted Shortest Path Problem

Problem: Given a "source" vertex s in an unweighted graph
$G=(V, E)$, find the shortest path from s to all vertices in G

Breadth-First Search Solution

- Basic Idea: Starting at node s, find vertices that can be reached using $0,1,2,3, \ldots, \mathrm{~N}-1$ edges (works even for cyclic graphs!)

Breadth-First Search Algorithm

- Uses a queue to track vertices that are "nearby"
- source vertex is s

```
Distance[s] := 0
Enqueue(Q,s); Mark(s)
while queue is not empty do
    X := Dequeue(Q);
    for each vertex Y adjacent to X do
        if Y is unmarked then
            Distance[Y] := Distance[X] + 1;
            Previous[Y] := X;
            Enqueue(Q,Y); Mark(Y);
```

- Running time $=\mathrm{O}(|V+|E|)$

Shortest Path

Shortest Path

$Q=A D E$
$\xrightarrow[\substack{\text { Previous } \\ \text { pointer }}]{ }$

Shortest Path

Shortest Path

Shortest Path

Shortest Path

What if edges have weights?

- Breadth First Search does not work anymore
, minimum cost path may have more edges than minimum length path

Shortest path from C to A:
C $A(\operatorname{cost}=9)$
Minimum Cost
Path $=C \quad E \quad D \quad A$
(cost $=8$)

Dijkstra's Algorithm for Weighted Shortest Path

- Classic algorithm for solving shortest path in weighted graphs (without negative weights)
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Each vertex has a cost for path from initial vertex

Dijkstra's Shortest Path Algorithm

- Initialize the cost of s to 0 , and all the rest of the nodes to ∞
- Initialize set S to be \varnothing
, S is the set of nodes to which we have a shortest path
- While S is not all vertices
, Select the node A with the lowest cost that is not in S and identify the node as now being in S
, for each node B adjacent to A
- if $\operatorname{cost}(A)+\operatorname{cost}(A, B)<B$'s currently known cost
$-\operatorname{set} \operatorname{cost}(B)=\operatorname{cost}(A)+\operatorname{cost}(A, B)$
- set previous(B) = A so that we can remember the path

A weighted directed graph

Pick vertex not in S with lowest cost.

A weighted directed graph

Update neighbors

A weighted directed graph

Pick vertex not in S with lowest cost

A weighted directed graph

Update neighbors

A weighted directed graph

Pick vertex not in S with lowest cost and update neighbors

A weighted directed graph

Pick vertex not in S with lowest cost and update neighbors

A weighted directed graph

Pick vertex not in S with lowest cost and update neighbors

A weighted directed graph

Pick vertex not in S with lowest cost and update neighbors

A weighted directed graph

Pick vertex not in S with lowest cost and update neighbors

Data Structures

- Adjacency Lists previous cost queue pointers

Priority queue for finding finding and deleting lowest cost vertex and for decreasing costs (Binary Heap works)

Priority Queue

C		Q	
			0

index in heap

Before the update, but after find min.

Priority Queue

Priority Queue

Time Complexity

- n vertices and m edges
- Initialize data structures $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Find min cost vertices $O(n \log n)$
, n delete mins
- Update costs O(m log n)
, Potentially m updates
- Update previous pointers $O(m)$
, Potentially m updates
- Total time $\mathrm{O}((\mathrm{n}+\mathrm{m}) \log \mathrm{n})$ - very fast.

Does It Always Work?

- Dijkstra's algorithm is an example of a greedy algorithm
- Greedy algorithms always make choices that currently seem the best
, Short-sighted - no consideration of long-term or global issues
, Locally optimal does not always mean globally optimal
- In Dijkstra's case - choose the least cost node, but what if there is another path through other vertices that is cheaper?

"Cloudy" Proof

- If the path to G is the next shortest path, the path to P must be at least as long. Therefore, any path through P to G cannot be shorter!

Inside the Cloud (Proof)

- Everything inside the cloud has the correct shortest path
- Proof is by induction on the number of nodes in the cloud:
, Base case: Initial cloud is just the source with shortest path 0
, Inductive hypothesis: cloud of k-1 nodes all have shortest paths
, Inductive step: choose the least cost node G has to be the shortest path to G (previous slide). Add k-th node G to the cloud

All Pairs Shortest Path

- Given a edge weighted directed graph $\mathrm{G}=$ (V,E) find for all u, v in V the length of the shortest path from u to v. Use matrix representation.

C	1	2	3	4	5	6	
1	(0	2	:	1	:	:	-
2	:	0	:	3	10	:	-
3	4	:	0	-		5	-
4	:	:	2	0	2	8	4
5	:	:	:	:	0		6
6	:	:			:	0	
7	:	:	:	:		1	0)

Matrix Representation

- $C[i, j]=$ the cost of the edge (i, j)
, $\mathrm{C}[i, i]=0$ because no cost to stay where you are
, $C[i, j]=$ infinity (:) if no edge from ito j.

Floyd - Warshall Algorithm

```
All_Pairs_Shortest_Path {
for k = 1 to n do
    for i = 1 to n do
            for j = 1 to n do
            C[i,j] := min(C[i,j], C[i,k] + C[k,j]);
}
Note x + : = : by definition
```

On termination $C[i, j]$ is the length of the shortest path from i to j.

The Computation

Proof of Correctness

- After the k-th time through the loop $C[i, j]$ is the length of the shortest path that only passes through vertices numbered $1,2, \ldots, k$.
, Let $\mathrm{C}_{\mathrm{k}}[i, j]$ be $C[i, j]$ after k time through the loop.
- Base case: $\mathrm{k}=0 . \mathrm{C}_{0}[i, j]$ is the cost of an edge that does not pass through any vertices.

Inductive Step

- Assume true for k-1.
, A shortest path from i to j that only goes through vertices $1,2, \ldots, k$ does not go through vertex k at all.
- $\mathrm{C}_{k}[i, j]=\mathrm{C}_{\mathrm{k}-1}[\mathrm{i}, \mathrm{j}]$
, All shortest paths from i to j that only goes through vertices $1,2, \ldots$, k must go through vertex k .
- $\mathrm{C}_{\mathrm{k}}[\mathrm{i}, \mathrm{j}]=\mathrm{C}_{\mathrm{k}-1}[\mathrm{i}, \mathrm{k}]+\mathrm{C}_{\mathrm{k}-1}[\mathrm{k}, \mathrm{j}]$

Cloud Argument

Time Complexity of All Pairs Shortest Path

- n is the number of vertices
- Three nested loops. O(n^{3})
, Shortest paths can be found too (see the book).
- Repeated Dijkstra's algorithm
, $O(n(n+m) \log n)\left(=O\left(n^{3} \log n\right)\right.$ for dense graphs $)$.
, Run Dijkstra starting at each vertex.
, Dijkstra also gives the shortest paths not just their lengths.

