Stacks and Queues

CSE 373 - Data Structures
April 12, 2002

Readings and References

e Reading

> Section 3.3 and 3.4, Data Structures and Algorithm Analysis in C,
Weiss

e Other References

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues

Stacks

A list for which Insert and
Delete are allowed only at one
end of the list (the top) XN

> the Implementation defines
which end is the "top"

> LIFO — Last In, First out
e Push: Insert element at top

e Pop: Remove and return top
element (aka TopAndPop)

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues

a tray stack

Stack ADT

voi d push(Stack S, El enent Type E)
> add an entry to the stack for E
El enent Type pop(Stack S)

> remove the top entry from the stack and return it

Stack CreateStack(void)

> Create a new, empty stack
voi d DestroyStack(Stack S)

> release all memory associated with this stack

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues

Pointer based Stack implementation

o Linked list with header
« typedef struct ListNode *Stack;
> "Stack" type Is a pointer to a List header node
« S->pext points to top of stack, the first
node In the List that contains actual data
> the data Is of type ElementType
« push(S, El enent Type E);
> Insert a new node at the start of the list

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 5

Pointer based stack elements

Stack S
S = CreateStack(100);

mal | oc(si zeof (struct ListNode));

‘ °—|\> val ue | next
Stack S: | gnore] NULL
DUSh(S’ nyser) ; Li st Node
‘ ’—|—’| NULL
St ack S

Svnbol
val ue
nNnnN

xyzaaa<0>|

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues

Pointer based Stack 1ssues

 Potentially a lot of calls to malloc and free
If the stack Is actively used

> memory allocation and release require
expensive trips through the operating system

* Relatively elaborate data structure for the
simple push/pop functions performed
> overhead of ListNodes
> Insert and delete only take place at one end

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues

Pointer based Stack

« Under some circumstances a pointer based
stack can be a good choice

* For example, assume
> astruct Synbol IS allocated once for each symbol
> the symbol Is used for a long time In various ways
> there 1ISa struct Symbol *next IN €ach struct Synbol

> then you can use the synbol objects as list nodes and
link / unlink them with no nal I oc/ f ree Needed

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 8

Stack with BigSymbol nodes

bbb?2 ddd?2

ccc2

Bi gSynbol
__a_l_f__i__e_l__q_]l_hf_i__e_rj__d__ __Q_t_i___el__d__l__d_f__i__e_l__q_I
| ghor e ignore ignore ignore

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 9

Array based Stack implementation

» Recall the array implementation of Lists

> Insert and Delete took O(N) time because we
needed to shift elements when operating at an
arbitrary position in the list
« What If we avoid shifting by inserting and
deleting only at the end of the list?

> Both operations take O(1) time!

o Stack: A list for which Insert and Delete are
allowed only at one end of the list (the top)

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 10

Array based Stack implementation

* An array of ElementType entries

> dynamically allocated array
e typedef struct StackRecord *Stack;

> "Stack" type Is a pointer to a Stack data record
« S->current IS the array Iindex of the entry at
the top of the stack

> the data is of type ElementType
« push(S, El enent Type E);
> add a new entry at the end (top) of the current list

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 11

Array based Stack elements

struct StackRecord {
I nt capacity; /* max nunber of elenents */
I nt current; /* offset to nost recently pushed val ue */
El ement Type *buffer; /* pointer to actual stack area */

b

/|l Enpty stack has allocated array and current = -1

1top entry on stack

[EEN
N

0 3 ... | current capacity-1
A | A A, A, | - Ay

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 12

Array based stack create

Stack S
S = CeateStack(100);

E\ mal | oc(si zeof (struct StackRecord));
Stack S; Capaci ty] current i buf f er

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 13

Array based stack push

push(S, nySym ;

capacity

_E_lJ_f_IE_f!_t__][__PH_f_f_‘?_!___

Stack S;

?III ||

1 2 99
Synbol
name|val ue

\\llxyzaaa<0>|

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 14

Array based Stack Issues

e The array that Is used as the Stack must be
allocated and may be too big or too small

> can dynamically reallocate bigger array on
stack overflow

 Error checking
> who checks for overflow and underflow?

> an array based Stack is so simple that error
checking can be a significant percentage cost

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 15

(1 +5*(17 —J/(6*k)) : Balanced?

* Balance Checker using Stack
> create an empty stack and start reading symbols
> If Input Is an opening symbol, push onto stack

> If input Is a closing symbol
o If stack is empty, report error
 Else, Pop the stack

Report error if popped symbol is not corresponding
open symbol

> If EOF and stack Is not empty, report error

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 16

Using a stack for function calls

stack pointer —>» |

before call to A

| ocal vari abl es
for function A

stack pointer —» |

before call to B _
| ocal vari abl es

for function B

stack pointer —» |

stack frames ——»

before call to C _
| ocal vari abl es

for function C

mai n: myVar = A(X); top of stack —y |

47

in A k = B(x,2); while in C
in B: z = C(500,tnp);
in C nmyVal = a+b;

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues

Using a Stack for Arithmetic

e Infix notation : a+b*c+(d*e+f)*g

> the operators are between the operands
 postfix notation: abc*+de*f+g*+

> the operators follow the operands
 convert to postfix using a stack

> read the input stream of characters

> output operands as they are seen
> push and pop operators according to priority

o evaluate postfix expression using a stack

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues

18

Queue

Insert at one end of List, remove at the other
end

Queues are “FIFO” — first In, first out
Primary operations are Enqueue and Dequeue

A queue ensures “fairness”
> customers waliting on a customer hotline
> processes waiting to run on the CPU

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 19

Queue ADT

* Operations:
> vold Enqueue(Queue Q, ElementType E)
 add an entry at the end of the queue

> ElementType Dequeue(Queue Q)
e remove the entry from the beginning of the queue
» aka ElementType FrontAndDequeue(Queue Q)

> Int IsEmpty(Queue Q)

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues

20

Queue ADT

 Pointer-based: what pointers do you need to
keep track of for O(1) implementation?

o Array-based: can use List operations Insert
and Delete, but O(N) time due to copying

 How can you make array-based Enqueue and
Dequeue O(1) time?

> Use Front and Rear indices: Rear incremented
for Enqueue and Front incremented for Dequeue

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues 21

Applications of Queues

* File servers: Users needing access to their
files on a shared file server machine are
given access on a FIFO basis

* Printer Queue: Jobs submitted to a printer
are printed in order of arrival

 Phone calls made to customer service
hotlines are usually placed In a queue

12-Apr-02 CSE 373 - Data Structures - 6 - Stacks and Queues

22

