AVL Trees

CSE 373 - Data Structures
April 17, 2002



Readings and References

e Reading

> Section 4.4, Data Structures and Algorithm Analysis in C, Weiss

e Other References

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees



Binary Search Tree - Best Time

o All BST operations are O(d), where d is tree
depth

e minimumd is log N <d < log (N+1)-1 for a
binary tree with N nodes
> What Is the best case tree?

> What Is the worst case tree?

e S0, best case running time of BST operations
IS O(log N)

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 3



Binary Search Tree - Worst Time

 \Worst case running time 1s O(N)

> What happens when you Insert elements in
ascending order?

 Insert: 2, 4, 6, 8, 10, 12 into an empty BST

> Problem: Lack of “balance”:
« compare depths of left and right subtree

> Unbalanced degenerate tree

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 4



Balanced and unbalanced BST

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees



Approaches to balancing trees

 Don't balance
> likely to end up with some nodes very deep

o Strict balance on insert
> The tree must always be balanced perfectly

 Pretty good balance on insert
> Only allow a little out of balance

e Adjust on access
> better balance through self adjustment

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees



Balancing Trees

« Many algorithms exist for keeping trees
balanced

> Adelson-Velskii and Landis (AVL) trees
> Splay trees and other self-adjusting trees
> B-trees and other multiway search trees

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees



Perfect Balance

o \Want a complete tree after every operation
> tree IS full except possibly in the lower right

o This Is expensive

> For example, insert 2 in the tree on the left and then
rebuild as a complete tree

Insert 2 &
(4 © 2 8
complete tree

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees




AVL - Pretty Good Balance

 AVL trees are height-balanced binary search
trees

« Balance factor of a node
> height(left subtree) - height(right subtree)

e An AVL tree has balance factor calculated at
every node

> For every node, heights of left and right subtree
can differ by no more than 1

> Store current heights in each node

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 9



Node Heights

17-Apr-02

height of node = h
balance factor = h.¢-h ;.
empty height = -1

CSE 373 - Data Structures - 8 - AVL Trees

10



Node Heights after Insert 7

17-Apr-02

height of node = h
balance factor = h.¢-h;
empty height = -1

CSE 373 - Data Structures - 8 - AVL Trees

balance factor
1-(-1) =2

11




Insert and Rotation in AVL Trees

* Insert operation may cause balance factor to
become 2 or —2 for some node

> only nodes on the path from insertion point to root
node have possibly changed in height

> S0 after the Insert, go back up to the root node by
node, updating heights

> If a new balance factor (the difference hyg-hyjgp) 1S
2 or —2, adjust tree by rotation around the node

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 12



Single Rotation in an AVL Tree

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 13



Insertions In AVL Trees

Let the node that needs rebalancing be .

There are 4 cases:
Outside Cases (require single rotation) :
1. Insertion into left subtree of left child of a.
2. Insertion into right subtree of right child of a.
Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of a.
4. Insertion into left subtree of right child of a.

The rebalancing is performed through four separate rotation
algorithms.

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 14



AVL Insertion: Outside Case

Consider a valid
AVL subtree

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 15



AVL Insertion: Outside Case

Inserting into X
destroys the AVL
property at node |

X

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 16




AVL Insertion: Outside Case

Do a “right rotation”

/_\

X

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 17




Single right rotation

Do a “right rotation”

X

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 18




Outside Case Completed

T ——

“Right rotation” done!
(“Left rotation” is mirror
symmetric)

X

AVL property has been restored!

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 19



AVL Insertion: Inside Case

Consider a valid
AVL subtree

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 20



AVL Insertion: Inside Case
N\

Does “right rotation”

Inserting into Y
restore balance?

destroys the
AVL property
at node |

CSE 373 - Data Structures - 8 - AVL Trees

17-Apr-02



AVL Insertion: Inside Case

B ——

“Right rotation”
does not restore
balance... now K IS
out of balance

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 22



AVL Insertion: Inside Case

Consider the structure
of subtree Y...

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 23



AVL Insertion: Inside Case

Y = node I and
subtrees V and W

V

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 24



AVL Insertion: Inside Case

-
’— ~

,' We will do a left-right
“double rotation” . . .

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 25



Double rotation : first rotation

left rotation complete

e

V

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 26




Double rotation : second rotation
N\

Now do a right rotation

V

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 27




Double rotation : second rotation

right rotation complete

Balance has been restored
0 to the universe

V

17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 28




Pros and Cons of AVL Trees

Arguments for AVL trees:

o Searchis O(log N) since AVL trees are always balanced.
« The height balancing adds no more than a constant factor to
the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for height info.

2. Asymptotically faster but can be slow in practice.

3. Most large searches are done in database systems on disk and
use other structures (e.g. B-trees).

4. May be OK to have O(N) for a single operation if total run

time for many consecutive operations is fast (e.g. Splay trees).
17-Apr-02 CSE 373 - Data Structures - 8 - AVL Trees 29



