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Readings and References

e Reading

> Section 4.4, Data Structures and Algorithm Analysis in C, Weiss

e Other References
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Binary Search Tree - Best Time

o All BST operations are O(d), where d is tree
depth

e minimumd is log N <d < log (N+1)-1 for a
binary tree with N nodes
> What Is the best case tree?

> What Is the worst case tree?

e S0, best case running time of BST operations
IS O(log N)
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Binary Search Tree - Worst Time

 \Worst case running time 1s O(N)

> What happens when you Insert elements in
ascending order?

 Insert: 2, 4, 6, 8, 10, 12 into an empty BST

> Problem: Lack of “balance”:
« compare depths of left and right subtree

> Unbalanced degenerate tree
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Balanced and unbalanced BST
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Approaches to balancing trees

 Don't balance
> likely to end up with some nodes very deep

o Strict balance on insert
> The tree must always be balanced perfectly

 Pretty good balance on insert
> Only allow a little out of balance

e Adjust on access
> better balance through self adjustment
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Balancing Trees

« Many algorithms exist for keeping trees
balanced

> Adelson-Velskii and Landis (AVL) trees
> Splay trees and other self-adjusting trees
> B-trees and other multiway search trees
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Perfect Balance

o \Want a complete tree after every operation
> tree IS full except possibly in the lower right

o This Is expensive

> For example, insert 2 in the tree on the left and then
rebuild as a complete tree

Insert 2 &
(4 © 2 8
complete tree
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AVL - Pretty Good Balance

 AVL trees are height-balanced binary search
trees

« Balance factor of a node
> height(left subtree) - height(right subtree)

e An AVL tree has balance factor calculated at
every node

> For every node, heights of left and right subtree
can differ by no more than 1

> Store current heights in each node
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Node Heights
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height of node = h
balance factor = h.¢-h ;.
empty height = -1
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Node Heights after Insert 7
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height of node = h
balance factor = h.¢-h;
empty height = -1
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balance factor
1-(-1) =2
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Insert and Rotation in AVL Trees

* Insert operation may cause balance factor to
become 2 or —2 for some node

> only nodes on the path from insertion point to root
node have possibly changed in height

> S0 after the Insert, go back up to the root node by
node, updating heights

> If a new balance factor (the difference hyg-hyjgp) 1S
2 or —2, adjust tree by rotation around the node
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Single Rotation in an AVL Tree
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Insertions In AVL Trees

Let the node that needs rebalancing be .

There are 4 cases:
Outside Cases (require single rotation) :
1. Insertion into left subtree of left child of a.
2. Insertion into right subtree of right child of a.
Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of a.
4. Insertion into left subtree of right child of a.

The rebalancing is performed through four separate rotation
algorithms.
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AVL Insertion: Outside Case

Consider a valid
AVL subtree
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AVL Insertion: Outside Case

Inserting into X
destroys the AVL
property at node |

X
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AVL Insertion: Outside Case

Do a “right rotation”

/_\

X
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Single right rotation

Do a “right rotation”

X
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Outside Case Completed

T ——

“Right rotation” done!
(“Left rotation” is mirror
symmetric)

X

AVL property has been restored!
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AVL Insertion: Inside Case

Consider a valid
AVL subtree
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AVL Insertion: Inside Case
N\

Does “right rotation”

Inserting into Y
restore balance?

destroys the
AVL property
at node |
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AVL Insertion: Inside Case

B ——

“Right rotation”
does not restore
balance... now K IS
out of balance
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AVL Insertion: Inside Case

Consider the structure
of subtree Y...
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AVL Insertion: Inside Case

Y = node I and
subtrees V and W

V
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AVL Insertion: Inside Case

-
’— ~

,' We will do a left-right
“double rotation” . . .
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Double rotation : first rotation

left rotation complete

e

V
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Double rotation : second rotation
N\

Now do a right rotation

V
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Double rotation : second rotation

right rotation complete

Balance has been restored
0 to the universe

V
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Pros and Cons of AVL Trees

Arguments for AVL trees:

o Searchis O(log N) since AVL trees are always balanced.
« The height balancing adds no more than a constant factor to
the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for height info.

2. Asymptotically faster but can be slow in practice.

3. Most large searches are done in database systems on disk and
use other structures (e.g. B-trees).

4. May be OK to have O(N) for a single operation if total run

time for many consecutive operations is fast (e.g. Splay trees).
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