Binomial Queues

CSE 373 - Data Structures
April 29, 2002

Readings and References

- Reading
> Section 6.8, Data Structures and Algorithm Analysis in C, Weiss
- Other References

Merging heaps

- Binary Heap is a special purpose hot rod
> FindMin, DeleteMin and Insert only
> does not support fast merges of two heaps
- For some applications, the items arrive in prioritized clumps, rather than individually
- Is there somewhere in the heap design that we can give up a little performance so that we can gain faster merge capability?

Binomial Queues

- Binomial Queues are designed to be merged quickly with one another
- Using pointer-based design we can merge large numbers of nodes at once by simply pruning and grafting tree structures
- More overhead than Binary Heap, but the flexibility is needed for improved merging speed

Worst Case Run Times

	Binary Heap		Binomial Queue
Insert	$\Theta(\log N)$		$\Theta(\log \mathrm{N})$
FindMin	$\Theta(1)$		$O(\log \mathrm{~N})$
DeleteMin	$\Theta(\log \mathrm{N})$		$\Theta(\log \mathrm{N})$
Merge	$\Theta(\mathrm{N})$	$O(\log \mathrm{~N})$	

Binomial Queues

- Binomial queues give up Θ (1) FindMin performance in order to provide $\mathrm{O}(\log \mathrm{N})$ merge performance
- A binomial queue is a collection (or forest) of heap-ordered trees
> Not just one tree, but a collection of trees
> each tree has a defined structure and capacity
> each tree has the familiar heap-order property

Binomial Queue with 5 Trees

Structure Property

- Each tree contains two copies of the previous tree
> the second copy is attached at the root of the first copy
- The number of nodes in a tree of depth d is exactly 2^{d}

depth	2	1	0
number of elements	$2^{2}=4$	$2^{1}=2$	$2^{0}=1$

Powers of 2

- Any number N can be represented in base 2
> A base 2 value identifies the powers of 2 that are to be included

$\therefore \quad \therefore \quad 0 \quad 1$					
11	11	11	11		
$\stackrel{N}{N}$	N	$\stackrel{-}{N}$	$\stackrel{\circ}{\sim}$	Hex_{16}	Decimal ${ }_{10}$
		1	1	3	3
	1	0	0	4	4
	1	0	1	5	5

Numbers of nodes

- Any number of entries in the binomial queue can be stored in a forest of binomial trees
- Each tree holds the number of nodes appropriate to its depth, ie $2^{\text {d }}$ nodes
- So the structure of a forest of binomial trees can be characterized with a single binary number
> $100_{2} \rightarrow 1 \cdot 2^{2}+0 \cdot 2^{1}+0 \cdot 2^{0}=4$ nodes

Structure Examples

What is a merge?

- There is a direct correlation between
> the number of nodes in the tree
> the representation of that number in base 2
> and the actual structure of the tree
- When we merge two queues, the number of nodes in the new queue is the sum of $N_{1}+N_{2}$
- We can use that fact to help see how fast merges can be accomplished

Merge by adding the trees

- A merge of two queues can be viewed as adding the two sets of trees together
> $0+0=0 \rightarrow$ neither queue has a tree at that position and so neither does the sum
> $0+1=1 \rightarrow$ only one of the queues has a tree at that position, and so it is copied into the sum

Merge BQ. 1 and BQ. 2
Note that nothing was done with any of the nodes in order to accomplish this.

There are no
comparisons and there is no restructuring.

Merge by adding the trees

- A merge of two queues can be viewed as adding the two sets of trees together
> $1+1=2_{10}=10_{2} \rightarrow$ both queues have a tree at that position and so the sum has a double-sized tree at the next higher position and nothing at the current position > ...

Merge BQ. 2 and BQ. 2

There are two trees at position 1. So attach the tree with the larger root as a child of the tree with the smaller root, and put the resulting tree in the next higher position.

This is an add with a carry out.

It is accomplished with one comparison and one pointer change: $\mathrm{O}(1)$

Merge by adding the trees

- A merge of two queues can be viewed as adding the two sets of trees together
> $1+1+$ carry $=3_{10}=11_{2} \rightarrow$ both queues have a tree at that position and there is a carry from the previous position and so the sum has a doublesized tree at the next higher position and a tree at the current position

Merge BQ. 3 and BQ. 3
Part 1 - Form the carry.
There are two trees at position 0 . So attach the tree with the larger root as a child of the tree with the smaller root, and put the resulting tree in the next higher position.

This is an add with a carry out.

carry		$\begin{aligned} & 7 \\ & 8 \end{aligned}$		+ BQ. 3		$\begin{aligned} & 1 \\ & 3 \\ & \hline \end{aligned}$	(7)
$\mathrm{N}=\mathrm{2}_{10}=1 \mathrm{O}_{2}$	$2^{2}=4$	$2^{1}=2$	$2^{0}=1$	$\mathrm{N}=3_{10}=11_{2}$	$2^{2}=4$	$2^{1}=2$	$2^{0}=1$

Merge BQ. 3 and BQ. 3
Part 2 - Add the existing values and the carry.

Put the carry in the current position. Attach the existing tree with the larger root as a child of the existing tree with the smaller root, and put the result tree in the next higher position (ie, it is the carry out).

+ BQ. 3		4 4 6	(8)
$\mathrm{N}=3_{10}=11_{2}$	$2^{2}=4$	$2^{1}=2$	$2^{0}=1$

= BQ. 6		$\begin{aligned} & 7 \\ & 7 \\ & 8 \end{aligned}$	
$\mathrm{N}=6_{10}=110_{2}$	$2^{2}=4$	$2^{1}=2$	$2^{0}=1$

High Speed Merging

- Notice that although there are lots of nodes involved, the actual merge operation only touches the root nodes of a few trees
- Very fast compared to inserting the contents of an entire heap as we would have to do with binary heaps which would be $\Theta(\mathrm{N})$
- There are $\log \mathrm{N}$ trees in each Binomial Queue and so the merge is $\mathrm{O}(\log \mathrm{N})$

Binomial Queues: Insert

- How would you insert a new item into the queue?
> Create a single node queue B_{0} with the new item and merge with existing queue > Again, $\mathrm{O}(\log \mathrm{N})$ time

Binomial Queues: DeleteMin

- Steps:
> Find tree B_{k} with the smallest root $\mathrm{O}(\log \mathrm{N})$
> Remove B_{k} from the queue $\mathrm{O}(1)$
> Remove root of B_{k} (return this value) $\mathrm{O}(1)$
- You now have a new queue made up of the forest B_{0}, $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{k}-1}$.
> Merge this new queue with remainder of the original (from step 2) $\mathrm{O}(\log \mathrm{N})$
- Total time $=\mathrm{O}(\log \mathrm{N})$

Implementation

- Merge adds one binomial tree as child to another and DeleteMin requires fast access to all subtrees of root
> Need pointer-based implementation
> Use First-Child/Next-Sibling representation of trees
> Use array of pointers to root nodes of binomial trees

Why Binomial?

