Quick Sort

CSE 373 - Data Structures May 15, 2002

Readings and References

- Reading
> Section 7.7, Data Structures and Algorithm Analysis in C, Weiss
- Other References
> CLR

Sorting Ideas - swap adjacent

- Swap adjacent elements
> Bubble sort
- it works, but it's always slow
> Insertion sort
- works well on already sorted or partially sorted input
- low overhead so it works well on small inputs or as the basic sorter for a larger algorithm

Sorting Ideas - swap non-adjacent

- Swap non-adjacent elements
, Shell sort
- resolves multiple inversions with a single swap
- does an insertion sort of variable sized sub-arrays
- choice of increments critical
> Heap sort
- resolves multiple inversions with a single swap
- does insertion sort of paths through a binary heap

Sorting Ideas - recursion and merge

- Merging two sorted arrays is fast
> Partition the array and sort each part separately, then merge the results
> The merge can resolve many inversions with each element merged
- Merge sort
> Fast
> requires extra $\mathrm{O}(\mathrm{N})$ temporary array

Sorting Ideas - recursion and join

- Joining two sorted arrays can be very fast
> Partition the array into a set of little elements and a set of big elements, sort each partition, and join them
> The partitioning operation can move elements a long way towards the final location in one move
- Quick Sort
> Fast
> in-place sort (no extra space required)
15-May-02

Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the $\mathrm{O}(\mathrm{N})$ extra space that MergeSort does
> Partition array into left and right sub-arrays
- the elements in left sub-array are all less than pivot
- elements in right sub-array are all greater than pivot
> Recursively sort left and right sub-arrays
> Concatenate left and right sub-arrays in $\mathrm{O}(1)$ time

"Four easy steps"

- To sort an array \mathbf{S}
> If the number of elements in \mathbf{S} is 0 or 1, then return. The array is sorted.
, Pick an element v in \mathbf{S}. This is the pivot value.
> Partition $\mathbf{S}-\{v\}$ into two disjoint subsets, $\mathbf{S}_{1}=$ $\{$ all values $x \leq v\}$, and $\mathbf{S}_{2}=\{$ all values $x \geq v\}$.
> Return QuickSort(\mathbf{S}_{1}), v, QuickSort $\left(\mathbf{S}_{2}\right)$

The steps of QuickSort

\mathbf{S}_{1}

[Weiss]

Quicksort Example

- Sort the array containing:

Details, details

- "The algorithm so far lacks quite a few of the details"
- Implementing the actual partitioning
- Picking the pivot
> want a value that will cause $\left|S_{1}\right|$ and $\left|S_{2}\right|$ to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot

Quicksort Partitioning

- Need to partition the array into left and right sub-arrays
$>$ the elements in left sub-array are \leq pivot
> elements in right sub-array are \geq pivot
- How do the elements get to the correct partition?
> Choose an element from the array as the pivot
> Make one pass through the rest of the array and swap as needed to put elements in partitions

Partitioning is done In-Place

- One implementation (there are others)
> median3 finds pivot and sorts left, center, right
> Swap pivot with next to last element
> Set pointers i and j to start and end of array
, Increment i until you hit element $\mathrm{A}[\mathrm{i}]>$ pivot
> Decrement juntil you hit element $\mathrm{A}[\mathrm{j}]$ < pivot
> Swap A[i] and A[j]
> Repeat until i and j cross
> Swap pivot (= A[N-2]) with A[i]

Choosing the Pivot (1)

- First (bad) Idea
> Pick the first element as pivot
> What if it is the smallest or largest?

, What if the array is sorted? How many recursive calls does quicksort make?
- $\mathrm{O}(\mathrm{N})$ calls, and it does $\mathrm{O}(\mathrm{N})$ work for each call, so you do $\mathrm{O}\left(\mathrm{N}^{2}\right)$ work when the array is
 already sorted!

Choosing the Pivot (2)

- $2^{\text {nd }}$ (okay) Idea:
, Pick a random element to be the pivot
> Gets rid of asymmetry in left/right sizes
> Actually works pretty well
>But it requires calls to pseudo-random number generator
- expensive in terms of time
- many implementations are not particularly random

Choosing the Pivot (3a)

- Third idea
> Pick median element (N/2 ${ }^{\text {th }}$ largest element)
> This is great ... it splits \mathbf{S} exactly in two
> But it's hard to find the median element without sorting the entire array first, which is why we are here in the first place ...

Choosing the Pivot (3b)

- Find the median of the first, middle and last elements - "median of 3 "
- If the data in the array is not sorted, median of 3 is similar to picking a random pivot
- If the data in the array is presorted, this will pick a value near the actual median of the entire array, which is good

Median-of-Three Pivot

- Find the median of the first, middle and last element

- Takes only $\mathrm{O}(1)$ time and not error-prone like the pseudo-random pivot choice
- Less chance of poor performance as compared to looking at only 1 element
- For sorted inputs, splits array nicely in half each recursion

$\mathrm{A}[\mathrm{i}]==$ pivot?

- Stop and swap
> while(A[++i]<pivot) \{\}
> while(A[--j]>pivot) \{\}
- Although this seems a little odd, it moves i and j towards the middle
> the benefit of balanced partitions when i and j cross in the middle outweighs the extra cost of swapping elements that are equal to the pivot

Quicksort Best Case Performance

- Algorithm always chooses best pivot and splits sub-arrays in half at each recursion

$$
>\mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)
$$

- constant time if 0 or 1 element
> For $\mathrm{N}>1,2$ recursive calls plus linear time for partitioning
> $\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{O}(\mathrm{N})$
- Same recurrence relation as Mergesort
> $\mathrm{T}(\mathrm{N})=\underline{\mathrm{O}(\mathrm{N} \log \mathrm{N})}$

Quicksort Worst Case Performance

- Algorithm always chooses the worst pivot one sub-array is empty at each recursion

$$
\begin{aligned}
& \text {, } \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1) \\
& \text { > } \mathrm{T}(\mathrm{~N})=\mathrm{T}(\mathrm{~N}-1)+\mathrm{O}(\mathrm{~N}) \\
& \text {, } \quad=\mathrm{T}(\mathrm{~N}-2)+\mathrm{O}(\mathrm{~N}-1)+\mathrm{O}(\mathrm{~N}) \\
& \text { > } \quad=\mathrm{T}(0)+\mathrm{O}(1)+\ldots+\mathrm{O}(\mathrm{~N}) \\
& \text { > } \mathrm{T}(\mathrm{~N})=\mathrm{O}\left(\mathrm{~N}^{2}\right)
\end{aligned}
$$

- Fortunately, average case performance is $\mathrm{O}(\mathrm{N} \log \mathrm{N})($ see text for proof)

