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Readings and References

• Reading
› Chapter 8, Data Structures and Algorithm Analysis in C, Weiss

• Other References
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Relations on a set

• Consider the relation “=” between integers
› For any integer a, a = a
› For integers a and b, a = b means that b = a
› For integers a, b, and c, a = b and b = c means

that a = c
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Relations on a set

• Consider cities connected by two-way roads
› Seattle is connected to itself
› Seattle is connected to Everett means Everett is

connected to Seattle
› If Seattle is connected to Everett and Everett is

connected to Bellingham, then Seattle is
connected to Bellingham

• Consider electrical connections between
components on a computer chip



17-May-02 CSE 373 - Data Structures - 18 - DisjointSets 5

Equivalence Relations

• An equivalence relation R obeys three
properties:
› reflexive: for any x, xRx is true
› symmetric: for any x and y, xRy implies yRx
› transitive: for any x, y, and z, xRy and yRz

implies xRz
• Preceding relations are all examples of

equivalence relations
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Equivalence Relations
• What are some relations that are not equivalence

relations?
› What about “<” on integers?

• not reflexive, not symmetric
› What about “≤” on integers?

• not symmetric
› What about “is having an affair with” in a soap

opera?
• Victor IHAAW Ashley IHAAW Brad does not imply

Victor IHAAW Brad ∴  not transitive
• probably not reflexive, although in the soaps, who

knows ...
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Equivalence Classes & Disjoint Sets

• A specific equivalence relation operator R
divides all the elements into disjoint sets of
related items

• Let “~” be an equivalence relation
• If a~b, then a and b are in the same

equivalence class
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Equivalence Class Examples
• If  ~  denotes “electrically connected,” then sets

of connected components on a computer chip
form equivalence classes

• On a map, cites that have two-way roads between
them form equivalence classes
› as long as you say that reflexive means that just

sitting in town satisfies Seattle ~ Seattle
• path length = 0

› We don’t have loop roads that go out and come back
• path length = 1
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Modulo example

• The relation “Modulo N” divides all integers
in N equivalence classes.
› For example, “a mod 5” on the integers produces

5 equivalence classes (remainders 0 through 4
when the integers are divided by 5)

• 0 ~ 5 ~ 10 ~ …
• 1 ~ 6 ~ 11 ~ …
• 2 ~ 7 ~ 12 ~ …
• 3 ~ 8 ~ 13 ~ …
• 4 ~ 9 ~ 14 ~ …
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Problem Definition
• Given a set of elements and some

equivalence relation ~ between them, we
want to figure out the equivalence classes

• Given an element, we want to find the
equivalence class it belongs to
› E.g. Under mod 5, 13 belongs to the

equivalence class of 3
› E.g. For the map example, want to find the

equivalence class of Everett (all the cities it is
connected to)
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Problem Definition

• Given a new element, want to add it to an
equivalence class (union)
› Add 18 to the “a mod 5” relation already

containing the numbers shown
• Since 18 ~ 3 ~ 8 ~ 13, perform a union of 18 with

equivalence class of 3, 8, and 13
› Add Monroe to the city connection relation

• Everett is connected to Monroe, so add Monroe to
the same equivalence class as Everett, Seattle, and
Bellingham
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Disjoint Set ADT

• Find: Given an element, return the “name” of
its equivalence class

• note that we are finding the equivalence class,
not the element

• Union: Given the “names” of two equivalence
classes, merge them into one class
› may have a new name or one of the two old names
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Disjoint Set ADT

• The disjoint set ADT divides elements into
equivalence classes and manages the
combination of classes depending on the
relation of interest
› Names of classes are arbitrary e.g. 1 through N,

so long as Find returns the same name for 2
elements in the same equivalence class
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Disjoint Set ADT Properties
• Disjoint set equivalence property

› every element belongs to exactly one set (its
equivalence class)

• Dynamic equivalence property
› the name of the equivalence class that an

element is in may change after a union
› however, all elements in the class will always

have the same equivalence class name
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More Formal Definition

• Given a set U = {a1, a2, … , an}
• Maintain a partition of U, a set of subsets (or

equivalence classes) of U denoted by {S1, S2, … ,
Sk} such that:
› each pair of subsets Si and Sj are disjoint:
› together, the subsets cover U:
› each subset has a unique name

• Union(a, b) creates a new subset which is the
union of a’s subset and b’s subset

• Find(a) returns a unique name for a’s subset

�
k

i
iSU

1=

=

∅=∩ ji SS



17-May-02 CSE 373 - Data Structures - 18 - DisjointSets 16

Simple array implementation?
• How about an array implementation?

› Array A � A[i] holds the class name for
element i

› E.g. if 18 ~ 3, pick 3 as class name and set
A[18] = A[3] = 3

› Running time for Find(i)?
• just return A[i] : O(1)

› Running time for Union(i,j)?
• If first N/2 elements have class name 1 and next N/2

have class name 2, Union(1,2) will need to change
class names of N/2 items : O(N)
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Linked List Implementation?
• How about linked lists?

› One linked list for each equivalence class
› Running time for Find(i)?

• must scan all lists in worst case : O(N)
› Running time for Union(i,j)?

• just append one list to the other : O(1)

• Tradeoff between Union-Find – cannot do
both in O(1) time
› M Finds and N-1 Unions (the max)

• array O(M + N2) or lists O(MN+N)
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Let’s use a new Data Structure

• Intuition: Finding the representative
member (= class name) of a set is like the
opposite of finding a key in a given set

• So, instead of trees with pointers from each
node to its children, let’s use trees with a
pointer from each node to its parent

• Such trees are known as Up-Trees
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Up-Tree Data Structure

• Each equivalence class (or
discrete set) is an up-tree
with its root as its
representative member

• All members of a given set
are nodes in that set’s up-
tree

• Hash table maps input data
to the node associated with
that data
› input string � integer

a c

g

h

d b

e

Up-trees are usually not  binary!

f i

{a,d,g,b,e} {c,f} {h,i}

NULL NULL NULL
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Example of Find

a c g h

d b

e

f i

find(f) = c
find(e) = a

Find: Just traverse from the node to the root.

Runtime = ?
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Example of Union

a c g h

d b

e

f i

union(c,a)

Union: Just hang one root from the other.

Runtime = ?

Now: find(f) = c
find(e) = c


