Graphs
Minimum Spanning Trees

CSE 373 - Data Structures
May 29, 2002

Readings and References

e Reading

> Section 9.5, Data Structures and Algorithm Analysis in C, Weiss

e Other References

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

Breadth First Search (BFS)

* \We used Breadth First Search for finding
shortest paths In an unweighted graph

> Use a queue to explore neighbors of source
verteX, neighbors of each neighbor, and so on:
1 edge away, two edges away, etc.

* BFS spreads out like ripples in a pond

> all nodes at a given distance are looked at
before we go any further outward

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 3

Breadth-First Search

» Basic Idea: Starting at node s, find vertices
that can be reached using 0, 1, 2, 3, ..., N-1
edges

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

Breadth-First Search Algorithm

Uses a queue to track vertices that are “nearby”
source vertex Is s

Di st ance[S] =0 For each vertex
Enqueue(s)
/f)r each edge incideﬂ

VWii | e queue 1 s not enpt
q mpty with that vertex
X = dequeue a vertex

For each vertex Y that is (adjacent to X and not
previously visited)

Di stance[Y] = Distance[X] + 1
Previous[Y] = X
Enqueue Y

Running time (same as topological sort) = O(|V| + |E|)

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 5

Breadth-First Search

 BFS(C): Starting at node C, find vertices that can
be reached using 0, 1, 2, 3, ..., N-1 edges

Depth First Search (DFS)

A second way to explore all nodes in a
graph

DFS searches down one path as deep as
possible

> When no new nodes available, it backtracks

> When backtracking, we explore side-paths that
weren’t taken

DFS allows an easy recursive implementation
> S0, DFS uses a stack while BFS uses a queue

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

DFS Pseudocode

e Pseudocode for DFS:
DFS(v)
lf v is unvisited
mark v as visited
print v (or process V)
for each edge (v, w
DFS(w)

 Works for directed or undirected
graphs

e Running time = O(|V| + |E|)

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 8

Depth-First Search

 DFS(C): searches down one path as deeply as
possible, then backtracks and does It again

What about DFS on this graph?

« What happens when you do DFS(*1427)?

Go as deep as possible,
Then backtrack...

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

We get a “spanning” tree...

DFS and BFS may give different

trees...
[—©
DFS(C)
@/@t/@ T o—®
) -® T
BFS(C)

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 12

Spanning Tree Definition

e Spanning tree: a subset of edges from a connected
graph that:

> touches all vertices in the graph (spans the graph)
> forms a tree (is connected and contains no cycles)

« Minimum spanning tree: the spanning tree with the
least total edge cost

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 13

Minimum Spanning Tree (MST)

We are given a
welghted, undirected
graph G = (V, E), with
welght function

w: E =2 R mapping
edges to real valued
weights

Problem: Find the

minimum cost spanning
tree 2

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 14

Why minimum spanning trees?

 Lots of applications

 Minimize length of gas pipelines between
cities

* Find cheapest way to wire a house (with
minimum cable)

* Find a way to connect various routers on a
network that minimizes total delay

e EtC...

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree

Finding Min Spanning Trees

For any spanning tree T, inserting an edge e, notin T
creates a cycle
> Removing any edge e, from the cycle gives back a spanning tree

> If inserted edge e, has a lower cost than removed edge €4, We get a
lower cost spanning tree

Create a spanning tree as follows:
> Add an edge of minimum cost that doesn’t create a cycle
> Repeat for [V|-1 edges

Resulting spanning tree has minimum cost:

> 1f you could replace an edge with another edge of lower cost without
creating a cycle, our algorithm would have picked it

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 16

Min Spanning Tree Algorithms

e Prim
> pick lowest cost edge connected to known

spanning tree that doesn’t create a cycle and
expand to include it in the tree

e Kruskal

> pick lowest cost edge not yet in a tree that
doesn’t create a cycle and expand to include it
somewhere In the forest

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 17

Prim’s Algorithm for Finding the MST

e Starting from an empty
tree, T, pick a vertex, v,, at
random and initialize:
S={v,}and E ={}

e Choose the vertex v not in
S such that edge weight
from v to a vertex in S is
minimal (get greedy!)

 AddvtoSandthe edge to
E if no cycle is created

e Repeat until all vertices
have been added

"= @

10 ./)
’ 1

Y N

/7

1

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 18

Prim’s Algorithm for Finding the MST

e Starting from an empty
tree, T, pick a vertex, v, at
random and initialize:
S={v,}and E={}

2

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 19

Prim’s Algorithm for Finding the MST

e Starting from an empty
tree, T, pick a vertex, v,, at
random and initialize:
S={v,}and E ={}

e Choose the vertex v not in
S such that edge weight
from vtoavertexinSis
minimal (greedy algo)

Vo mm)

2

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 20

Prim’s Algorithm for Finding the MST

e Starting from an empty
tree, T, pick a vertex, v,, at
random and initialize:
S={v,}and E ={}

e Choose the vertex v not in
S such that edge weight
from v to avertex in Sis
minimal

 AddvtoS andthe edge to
E if no cycle is created

Vo mm)

1

2

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 21

Prim’s Algorithm for Finding the MST

e Starting from an empty
tree, T, pick a vertex, v,, at
random and initialize:
S={v,}and E ={}

e Choose the vertex v not In
S such that edge weight
from v to avertex in Sis
minimal

 AddvtoSandthe edge to
E if no cycle is created

e Repeat until all vertices
have been added

Vo mm)

1

2

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 22

Prim’s Algorithm for Finding the MST

e Starting from an empty
tree, T, pick a vertex, v,, at
random and initialize:
S={v,}and E ={}

e Choose the vertex v not In
S such that edge weight
from v to avertex in Sis
minimal

 AddvtoSandthe edge to
E if no cycle is created

e Repeat until all vertices
have been added

Vo mm)

1

2

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 23

Prim’s Algorithm for Finding the MST

e Starting from an empty
tree, T, pick a vertex, v,, at Vo mmp (1
random and initialize:

S={v,}and E ={} 10

e Choose the vertex v not In \ 8
S such that edge weight
from v to avertex in Sis
minimal

 AddvtoSandthe edge to
E if no cycle is created

e Repeat until all vertices
have been added 2

1

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 24

Prim’s Algorithm for Finding the MST

Starting from an empty

tree, T, pick a vertex, v,, at Vo mmp (1
random and initialize:

S={v,}and E ={} 10
Choose the vertex v not In \ ¢
S such that edge weight
from v to avertex in Sis
minimal

Add v to S and the edge to
E if no cycle is created \ ¥
Repeat until all vertices
have been added 2

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 25

Prim’s Algorithm for Finding the MST

Done!
Totalcost=1+3+4+1+1
=10

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 26

Prim’s Algorithm Analysis

Initialize connection cost of each node to o and nmark it unknown
Initialize connection cost of one selected node Sto 0, with
Prev[S] =0
Whil e there are unknown nodes left in the graph
Sel ect the unknown node Nwth the | owest connecti on cost
Mark N as known
For each unknown node A adjacent to N
|f cost of (N, A) < A's cost
A's cost = cost of (N, A
Prev[A] = N //store precedi ng node

e This is almost identical to Dijkstra’s algorithm
e Run time is O(|V|?) without heaps and O(|V| log |V| +
IE| log |V]) using binary heaps

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 27

Kruskal’s Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge
only iIf it does not cause a cycle

Put all the vertices into single node trees by thensel ves
Put all the edges in a priority queue wth key = edge cost
Repeat until |V|-1 edges have been accepted {

Extract cheapest edge frompriority queue

If it forns a cycle

I gnore it
el se
accept the edge — it will join two existing trees yielding

a larger tree and reducing the forest by one tree

}

Return the accepted edges (they formthe spanning tree)

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 28

Reducing the forest to a single tree

* Initially, there are n different single vertex
trees that partition the set of vertices

o After you have added some edges, you have
fewer (but larger) trees, which together still
partition the set of vertices

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 29

Detecting Cycles

* When do you get a cycle? If you add an
edge (u,v) where both u and v are already In

the same tree T, you get a cycle

> Therefore, to check for cycles, you only need to
find out If u and v are In the same tree

> If not, then the edge can be added and we union
vertices In u’s tree with vertices In v’s tree

« \What Is your favorite data structure for such
operations?

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 30

Kruskal’s use of Disjoint Set ADT

 In Kruskal’s algorithm, connected vertices form
equivalence classes
> each tree Is a set of connected vertices
> being connected is the equivalence relation

 Initially, each vertex is in a class by itself

« As edges are added, more vertices become related
and the equivalence classes grow in size and are
reduced in number

 Until finally all the vertices are in a single
equivalence class

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 31

Kruskal’s use of Disjoint Set ADT

» Detecting cycles Is easy!

* For each edge (u,v) that you’re thinking about
adding
> If Find(u) == Find(v), then u and v are in the same
class (same tree) and therefore the edge will form a
cycle, so reject it
> Otherwise, we accept the edge and do Union(u,v),

thereby indicating that all of the elements in the two
trees are now In the same tree

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 32

Kruskal initilized

® @ @
@
® @: O

All the vertices are in a forest of single element trees.
All the vertices are in a set of single element equivalence classes.

V = {{a}.{b}.{c}.{d}.{e}L{f}{gh{h} i}

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 33

Kruskal 1n action

29-May-02

The cheapest edge is h-g

o o0
@ %m

Join h and g into a 2-element tree.

V = {{a}.{b}.{c}.{d}.{e}.{f}.19.h}.{i}}

CSE 373 - Data Structures - 23 - Minimum Spanning Tree

34

Kruskal 1n action

29-May-02

The next cheapest edge is c-i

ST
}bm

Join c and I into a 2-element tree

V = {{a}.{b}.{c.i}.{d}.{e}.{f}.{g.h}}

CSE 373 - Data Structures - 23 - Minimum Spanning Tree

35

Kruskal 1n action

29-May-02

The next cheapest edge is g-f

@e R
"’

Join g tree and f into a 3-element tree

V = {{a}.{b}.{c.i}.{d}.{e}.{g..h}}

CSE 373 - Data Structures - 23 - Minimum Spanning Tree

36

Kruskal 1n action

29-May-02

The next cheapest edge is a-b

Join a and b into a 2-element tree

V = {{a,b}.{c,i}.{d}.{e}.{g.f.h}}

CSE 373 - Data Structures - 23 - Minimum Spanning Tree

37

Kruskal 1n action

29-May-02

The next cheapest edge is c-f

L

Join ¢ and f trees into one 5-element tree

V = {{a,b}.{c.,f,g.h.i},{d}.{e}}

CSE 373 - Data Structures - 23 - Minimum Spanning Tree

38

Kruskal 1n action

The next cheapest edge is g-I

o o X

Find(g) is c
@ Find(i) is also ¢
14
10

R

g-i forms a cycle. Ignore this edge.

V = {{a,b}.{c.,f,g,h,i}.{d}.{e}}

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 39

Kruskal 1n action

29-May-02

The next cheapest edge is c-d

‘-?’ @Hf
e N

Join c tree and d into one 6-element tree

V = {{a,b},{c,d,f,g,h,i},{e}}

CSE 373 - Data Structures - 23 - Minimum Spanning Tree

40

Kruskal 1n action

29-May-02

The next cheapest edge is h-i

a Q@x‘{?
tfw&

h-i forms a cycle. Ignore this edge.

Find(h) is c
Find(i) is c

V = {{a,b},{c,d.f,g,h,i},{e}}

CSE 373 - Data Structures - 23 - Minimum Spanning Tree

41

Kruskal 1n action

29-May-02

The next cheapest edge is a-h

@c
@I fl:l ?10

N

Join a and h trees into one tree

V ={{a,b,c,d,f,g,h,i},{e}}

CSE 373 - Data Structures - 23 - Minimum Spanning Tree

42

Kruskal done!

The next cheapest edge is b-c

Find(b) is c
Find(c)isc

29-May-02

9

The next cheapest edge is d-e

?

14
%m

b-c forms a cycle. Ignore this edge.

Join c tree and e into one tree

VvV ={{a,b,c,d,e,f,g,h,i}}

CSE 373 - Data Structures - 23 - Minimum Spanning Tree 43

Kruskal’s Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge
only iIf it does not cause a cycle

Put all the vertices into single node trees by themselves O(|V|)
Put all the edges in a priority queue with key = edge cost O(|E|)
Repeat until |V|-1 edges have been accepted { O(|E])

Extract cheapest edge frompriority queue O(log |E|)

If it forns a cycle

| lgnore It Worst case requires |E| DeleteMin operations

el se

accept the edge — it will join two existing trees yielding

a larger tree and reducing the forest by one tree

}

Return the accepted edges (they formthe spanning tree)
total worst case running time is O(|E|-log |E|)

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 44

Kruskal versus Prim

 \Worst case running time
> Prim: O(|V| log |V| + |E| log |V])
> Kruskal: O(|E| log |E|) = O(|E| log |V|) since |E|
= O(VP)
 Kruskal usually runs much faster than O(|E]
log |V|) In practice
> Not all edges need to be DeleteMin-ed typically
> The required |V|-1 edges are usually found
quickly
> S0, Kruskal tends to be faster than Prim

29-May-02 CSE 373 - Data Structures - 23 - Minimum Spanning Tree 45

