
Administrivia- Introduction

CSE 373
Data Structures

1/06/03 CSE 373 WI 03 - Introduction 2

Staff

•Instructor
› Jean -Loup Baer, baer@cs.washington.edu

•TA’s
› Jennifer Price, pricej@cs.washington.edu
› Tian Sang, sang@cs.washington.edu

1/06/03 CSE 373 WI 03 - Introduction 3

Web Page

•All info is on the web page for CSE 373
›http://www.cs.washington.edu/373
›also known as

• http://www.cs.washington.edu/education/courses/373/03wi
• Be sure to follow the link with “More info”

http://www.cs.washington.edu/education/courses/373/03wi/intro.html

1/06/03 CSE 373 WI 03 - Introduction 4

Office Hours

• Jean-Loup Baer –211 Sieg Hall
› M 1:30 –2:30, Th 11:00 –12:00 or by

appointment

• Jennifer Price –226 Sieg Hall
› TTh 1:00 –2:00

• Tian Sang –226 Sieg Hall
› MW 3:30 –4:30

• Exact room(s) in 226 Sieg to be posted later

1/06/03 CSE 373 WI 03 - Introduction 5

CSE 373 E-mail List

•Subscribe by going to the class web
page.

•E-mail list is used for posting
announcements by instructor and TAs.

•It is your responsibility to subscribe. It
might turn out to be very helpful for
assignments hints, corrections etc.

1/06/03 CSE 373 WI 03 - Introduction 6

Computer Lab

•Math Sciences Computer Center
›http://www.ms.washington.edu/

•Project can be done in Java or C++
›Java is recommended because the text is

in Java

1/06/03 CSE 373 WI 03 - Introduction 7

Textbook

• Data Structures and Algorithm Analysis in
Java, by Weiss

• See Web page for errata and Java source
code
› For the C++ afficionados, the same info is available in

› Data Structures and Algorithm Analysis in C++, by Weiss
(with errata and source code on the Web also)

1/06/03 CSE 373 WI 03 - Introduction 8

Grading

•Assignments and programming projects
50%

•Midterm 20%
›Mid-February

•Final 30%
›2:30-4:20 p.m. Wednesday, Mar. 19, 2003

1/06/03 CSE 373 WI 03 - Introduction 9

Class Overview

• Introduction to many of the basic data structures
used in computer software
› Understand the data structures
› Analyze the algorithms that use them
› Know when to apply them

• Practice design and analysis of data structures.
• Practice using these data structures by writing

programs.
• Data structures are the plumbing and wiring of

programs.

1/06/03 CSE 373 WI 03 - Introduction 10

Goal

•You will understand
›what the tools are for storing and

processing common data types
›which tools are appropriate for which need

•So that you will be able to
›make good design choices as a developer,

project manager, or system customer

1/06/03 CSE 373 WI 03 - Introduction 11

Course Topics

•Introduction to Algorithm Analysis
•Lists, Stacks, Queues
•Search Algorithms and Trees
•Hashing and Heaps
•Sorting
•Disjoint Sets
•Graph Algorithms

1/06/03 CSE 373 WI 03 - Introduction 12

Reading

• Chapters 1 and 2, Data Structures and
Algorithm Analysis in Java, by Weiss
› Very important sections:

•Section 1.2.5 on proofs

•Section 1.3 on recursion

› Most of Chapter 2 will be seen in Lecture 4

1/06/03 CSE 373 WI 03 - Introduction 13

Data Structures: What?

• Need to organize program data according to
problem being solved

• Abstract Data Type (ADT) - A data object and a
set of operations for manipulating it
› List ADT with operations insert and delete
› Stack ADT with operations push and pop

• Note similarity to Java classes
› private data structure and public methods

1/06/03 CSE 373 WI 03 - Introduction 14

Data Structures: Why?

• Program design depends crucially on how
data is structured for use by the program
› Implementation of some operations may become

easier or harder
› Speed of program may dramatically decrease or

increase
› Memory used may increase or decrease
› Debugging may be become easier or harder

1/06/03 CSE 373 WI 03 - Introduction 15

Terminology
• Abstract Data Type (ADT)

› Mathematical description of an object with set of
operations on the object. Useful building block.

• Algorithm
› A high level, language independent, description of

a step-by-step process
• Data structure

› A specific family of algorithms for implementing an
abstract data type.

• Implementation of data structure
› A specific implementation in a specific language

1/06/03 CSE 373 WI 03 - Introduction 16

Algorithm Analysis: Why?

•Correctness:
›Does the algorithm do what is intended.

•Performance:
›What is the running time of the algorithm.
›How much storage does it consume.

•Different algorithms may correctly solve
a given task
›Which should I use?

1/06/03 CSE 373 WI 03 - Introduction 17

Iterative Algorithm for Sum

•Find the sum of the first num integers
stored in an array v.

sum(v[]: integer array, num: integer): integer{
temp_sum: integer ;
temp_sum := 0;
for i = 0 to num – 1 do

temp_sum := v[i] + temp_sum;
return temp_sum;

}
Note the use of pseudocode

1/06/03 CSE 373 WI 03 - Introduction 18

Programming via Recursion

•Write a recursive function to find the
sum of the first num integers stored in
array v.

sum (v[]: integer array, num: integer): integer {
if num = 0 then

return 0
else

return v[num-1] + sum(v,num-1);
}

1/06/03 CSE 373 WI 03 - Introduction 19

Pseudocode

• In the lectures algorithms will be presented in
pseudocode.
› This is very common in the computer science

literature
› Pseudocode is usually easily translated to real

code.
› This is programming language independent

• Pseudocode should also be used for
homework

1/06/03 CSE 373 WI 03 - Introduction 20

Proof by Induction

•Basis Step: The algorithm is correct for
a base case or two by inspection.

• Inductive Hypothesis (n=k): Assume
that the algorithm works correctly for the
first k cases, for any k.

• Inductive Step (n=k+1): Given the
hypothesis above, show that the k+1
case will be calculated correctly.

1/06/03 CSE 373 WI 03 - Introduction 21

Program Correctness by
Induction

•Basis Step: sum(v,0) = 0. ü
• Inductive Hypothesis (n=k): Assume

sum(v,k) correctly returns sum of first k
elements of v, i.e. v[0]+v[1]+…+v[k-1]

• Inductive Step (n=k+1): sum(v,n)
returns v[k]+sum(v,k) which is the sum
of first k+1 elements of v. ü

1/06/03 CSE 373 WI 03 - Introduction 22

Algorithms vs Programs

• Proving correctness of an algorithm is very
important
› a well designed algorithm is guaranteed to work

correctly and its performance can be estimated

• Proving correctness of a program (an
implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap

between mathematical algorithms and programs

