
Lists

CSE 373
Data Structures

Lecture 3

1/10/03 Lists - Lecture 3 2

Readings

•Reading
› Section 3.1 ADT (recall, lecture 1):

• Abstract Data Type (ADT): Mathematical description of an
object with set of operations on the object.

› Section 3.2 The List ADT

1/10/03 Lists - Lecture 3 3

List ADT

•What is a List?
›Ordered sequence of elements A1, A2, … ,

AN

•Elements may be of arbitrary type, but
all are of the same type

•Common List operations are:
›Insert, Find, Delete, IsEmpty, IsLast,

FindPrevious, First, Kth, Last, Print, etc.

1/10/03 Lists - Lecture 3 4

Simple Examples of List Use

•Polynomials
›25 + 4x2 + 75x85

•Unbounded Integers
›4576809099383658390187457649494578

•Text
›“This is an example of text”

1/10/03 Lists - Lecture 3 5

List Implementations

•Two types of implementation:
›Array-Based
›Pointer-Based

1/10/03 Lists - Lecture 3 6

List: Array Implementation

• Basic Idea:
› Pre-allocate a big array of size MAX_SIZE
› Keep track of current size using a variable count
› Shift elements when you have to insert or delete

AN…A4A3A2A1

MAX_SIZE-1count-1…3210

1/10/03 Lists - Lecture 3 7

List: Array Implementation

FEDCBA

MAX_SIZE-1543210

Insert Z in kth position

EDCZBA

MAX_SIZE-1543210

F

6

1/10/03 Lists - Lecture 3 8

Array List Insert Running Time

• Running time for N elements?

• On average, must move half the elements to
make room –assuming insertions at
positions are equally likely

• Worst case is insert at position 0. Must move
all N items one position before the insert

• This is O(N) running time. Probably too slow

1/10/03 Lists - Lecture 3 9

Review Big Oh Notation

•T(N) = O(f(N)) if there are positive
constants c and n0 such that:

T(N) < c f(N) when N > n0

•T(N) = O(N) linear

1/10/03 Lists - Lecture 3 10

List: Pointer Implementation

• Basic Idea:
› Allocate little blocks of memory (nodes) as

elements are added to the list
› Keep track of list by linking the nodes together
› Change links when you want to insert or delete

Value
NULL

L node

Value Next

node

Next

1/10/03 Lists - Lecture 3 11

Pointer-Based Linked List

Value

NULL

pL

node
Value Next

node

Next

1/10/03 Lists - Lecture 3 12

Pointer-based Insert (after p)

Value

NULL

L

node
Value Next

node

P

Insert the value E after P

Next

Value
E

Next

1/10/03 Lists - Lecture 3 13

Insertion After

InsertAfter(p : node pointer, v : thing): {
x : node pointer;
x := new node;
x.value := v;
x.next := p.next;
p.next := x;
}

1/10/03 Lists - Lecture 3 14

Linked List with Header Node

Value Next

L

first actual list node
Value
ignore

Next

header node

NULL

Advantage: “insert after” and “delete after” can be done
at the beginning of the list.

1/10/03 Lists - Lecture 3 15

Pointer Implementation Issues

• Whenever you break a list, your code should fix
the list up as soon as possible
› Draw pictures of the list to visualize what needs to

be done
• Pay special attention to boundary conditions:

› Empty list
› Single item –same item is both first and last
› Two items –first, last, but no middle items
› Three or more items –first, last, and middle items

1/10/03 Lists - Lecture 3 16

Pointer List Insert Running
Time

• Running time for N elements?
• Insert takes constant time (O(1))
• Does not depend on input size
• Compare to array based list which is O(N)

1/10/03 Lists - Lecture 3 17

Linked List Delete

Value Next

L

node
Value Next

node

P

To delete the node pointed to by P,
need a pointer to the previous node;
See book for findPrevious method

NULL

1/10/03 Lists - Lecture 3 18

Doubly Linked Lists

• findPrevious (and hence Delete) is slow [O(N)]
because we cannot go directly to previous
node

• Solution: Keep a "previous" pointer at each
node

head prev prev prev

1/10/03 Lists - Lecture 3 19

Double Link Pros and Cons

• Advantage
› Delete (not DeleteAfter) and FindPrev are faster

• Disadvantages:
› More space used up (double the number of

pointers at each node)
› More book-keeping for updating the two pointers

at each node (pretty negligible overhead)

1/10/03 Lists - Lecture 3 20

Unbounded Integers Base 10

•-4572

•348

-12754null

X : node pointer

sign100101102103

1843null

sign100101102

Y : node pointer

1/10/03 Lists - Lecture 3 21

Zero

-1

1

null

null

1/10/03 Lists - Lecture 3 22

Recursive Addition

•Positive numbers (or negative numbers)

3427
+898

7
+8
5
10

342
+89

+1
Recursive calls

1/10/03 Lists - Lecture 3 23

Recursive Addition

•Mixed numbers

3427
-898

7
-8
9

-10

342
-89

-1
Recursive calls

1/10/03 Lists - Lecture 3 24

Example

•Mixed numbers

1000000
-999999

0
-9
1

-10

100000
-99999

1
-1
0

Recursive calls

