# Fundamentals 

CSE 373
Data Structures
Lecture 5

## Mathematical Background

- Today, we will review:
, Logs and exponents
, Series
, Recursion
, Motivation for Algorithm Analysis


## Powers of 2

- Many of the numbers we use in Computer Science are powers of 2
- Binary numbers (base 2) are easily represented in digital computers
, each "bit" is a 0 or a 1
, $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16, \ldots, 2^{10}=1024(1 \mathrm{~K})$
, , an $n$-bit wide field can hold $2^{n}$ positive integers:
- $0 \leq \mathrm{k} \leq 2^{\mathrm{n}}-1$


## Unsigned binary numbers

- For unsigned numbers in a fixed width field
, the minimum value is 0
, the maximum value is $2^{n}-1$, where n is the number of bits in the field
, The value is $\sum_{i=0}^{i=n-1} a_{i} 2^{i}$
- Each bit position represents a power of 2 with $a_{i}=0$ or $a_{i}=1$


## Logs and exponents

- Definition: $\log _{2} x=y$ means $x=2^{y}$
, $8=2^{3}$, so $\log _{2} 8=3$
, $65536=2^{16}$, so $\log _{2} 65536=16$
- Notice that $\log _{2} x$ tells you how many bits are needed to hold $x$ values
, 8 bits holds 256 numbers: 0 to $2^{8-1}=0$ to 255
, $\log _{2} 256=8$

$\mathrm{x}=0: .1: 4$
$\mathrm{y}=2 .^{\wedge} \mathrm{x}$
$\mathrm{plot}\left(\mathrm{x}, \mathrm{y}, \mathrm{'r}^{\prime}\right)$
hold on
plot $\left(\mathrm{y}, \mathrm{x}, \mathrm{I}^{\prime} \mathrm{g}^{\prime}\right)$
$\mathrm{plot}\left(\mathrm{y}, \mathrm{y}, \mathrm{I}^{\prime} \mathrm{b}^{\prime}\right)$
x, $2^{x}$ and $\log _{2} x$


| $x=0: 10$ |
| :--- |
| $y=2 \wedge^{\wedge} x$ |
| $p l o t\left(x, y, r^{\prime}\right)$ |
| hold on |
| plot $\left(y, x, g^{\prime}\right)$ |
| $p l o t\left(y, y, b^{\prime}\right)$ |

$2^{x}$ and $\log _{2} x$

## Floor and Ceiling

$\lfloor X\rfloor \quad$ Floor function: the largest integer $\leq X$
$\lfloor 2.7\rfloor=2 \quad\lfloor-2.7\rfloor=-3 \quad\lfloor 2\rfloor=2$
$\lceil X\rceil$ Ceiling function: the smallest integer $\geq \mathrm{X}$

$$
\lceil 2.3\rceil=3 \quad\lceil-2.3\rceil=-2 \quad\lceil 2\rceil=2
$$

## Facts about Floor and Ceiling

$$
\begin{aligned}
& \text { 1. } X-1<\lfloor X\rfloor \leq X \\
& \text { 2. } X \leq\lceil X\rceil<X+1 \\
& \text { 3. }\lfloor n / 2\rfloor+\lceil n / 2\rceil=n \quad \text { if } n \text { is an integer }
\end{aligned}
$$

## Properties of logs (of the mathematical kind)

- We will assume logs to base 2 unless specified otherwise
- $\log A B=\log A+\log B$
, $A=2^{\log _{2} A}$ and $B=2^{\log _{2} B}$
, $\mathrm{AB}=2^{\log _{2} \mathrm{~A}} \cdot 2^{\log _{2} \mathrm{~B}}=2^{\log _{2} \mathrm{~A}+\log _{2} \mathrm{~B}}$
, so $\log _{2} A B=\log _{2} A+\log _{2} B$
, [note: $\log A B \neq \log A \cdot \log B]$


## Other log properties

- $\log A / B=\log A-\log B$
- $\log \left(A^{B}\right)=B \log A$
- $\log \log X<\log X<X$ for all $X>0$
, $\log \log X=Y$ means $2^{2^{Y}}=X$
, $\log X$ grows slower than $X$
- called a "sub-linear" function


## A log is a $\log$ is a $\log$

- Any base $x$ log is equivalent to base 2 log within a constant factor

$$
\begin{aligned}
& \log _{x} B=\log _{x} B \\
& B=2^{\log _{2} B} \\
& x=2^{\log _{2} x} \\
& \begin{aligned}
\left(2^{\log _{2} \mathrm{X}}\right)^{\log _{x} B} & =2^{\log _{2} B} \\
2^{\log _{2} \times \log _{x} B} & =2^{\log _{2} B}
\end{aligned} \\
& \log _{2} x \log _{x} B=\log _{2} B \\
& \log _{x} B=\frac{\log _{2} B}{\log _{2} X}
\end{aligned}
$$

## Arithmetic Series

- $S(N)=1+2+\ldots+N=\sum_{i=1}^{N} i$
- The sum is
, $S(1)=1$
, $S(2)=1+2=3$
, $S(3)=1+2+3=6$
- $\sum_{i=1}^{N} i=\frac{N(N+1)}{2}$

Why is this formula useful when you analyze algorithms?

## Algorithm Analysis

- Consider the following program segment:

$$
x:=0 ;
$$

$$
\text { for } i=1 \text { to } N \text { do }
$$

$$
\text { for } j=1 \text { to i do }
$$

$$
\mathrm{x}:=\mathrm{x}+1 ;
$$

- What is the value of $x$ at the end?


## Analyzing the Loop

- Total number of times x is incremented is the number of "instructions" executed $=\quad 1+2+3+\ldots=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}$
- You've just analyzed the program!
, Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N
, O(N2)


## Analyzing Mergesort

```
Mergesort(p : node pointer) : node pointer {
Case {
    p = null : return p; //no elements
    p.next = null : return p; //one element
    else
        d : duo pointer; // duo has two fields first,second
        d := Split(p);
        return Merge(Mergesort(d.first),Mergesort(d.second));
}
                    T(n) is the time to sort n items.
            T(0),T(1) \leqc
            T(n)\leqT(\lfloorn/2\rfloor)+T([n/2])+dn
```


## Mergesort Analysis Upper Bound

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & \leq 2 T(n / 2)+d n \quad \text { Assuming } n \text { is a power of } 2 \\
& \leq 2(2 T(n / 4)+d n / 2)+d n \\
& =4 T(n / 4)+2 d n \\
& \leq 4(2 T(n / 8)+d n / 4)+2 d n \\
& =8 T(n / 8)+3 d n
\end{aligned}
$$

$$
\vdots
$$

$$
\leq 2^{k} T\left(n / 2^{k}\right)+k d n
$$

$$
=n T(1)+k d n \quad \text { if } n=2^{k} \quad n=2^{k}, k=\log n
$$

$$
\leq \mathrm{cn}+\mathrm{dn} \log _{2} \mathrm{n}
$$

$$
=O(n \log n)
$$

## Recursion Used Badly

- Classic example: Fibonacci numbers $F_{n}$

$$
0,1,1,2,3,5,8,13,21, \ldots \circ \circ_{0}
$$

, $\mathrm{F}_{0}=0, \mathrm{~F}_{1}=1$ (Base Cases)
, Rest are sum of preceding two $F_{n}=F_{n-1}+F_{n-2}(n>1)$

Leonardo Pisano
Fibonacci (1170-1250)

## Recursive Procedure for Fibonacci Numbers

```
fib(n : integer): integer {
    Case {
    n < 0 : return 0;
    n = 1 : return 1;
    else : return fib(n-1) + fib(n-2);
    }
    }
```

- Easy to write: looks like the definition of $\mathrm{F}_{\mathrm{n}}$
- But, can you spot the big problem?


## Recursive Calls of Fibonacci Procedure



- Re-computes fib(N-i) multiple times!


## Fibonacci Analysis Lower Bound

$T(n)$ is the time to compute fib(n). $T(0), T(1) \geq 1$

$$
T(n) \geq T(n-1)+T(n-2)
$$

It can be shown by induction that $T(n) \geq \phi^{n-2}$ where

$$
\phi=\frac{1+\sqrt{5}}{2} \approx 1.62
$$

## Iterative Algorithm for Fibonacci Numbers

```
fib_iter(n : integer): integer {
fib0, fibl, fibresult, i : integer;
fib0 := 0; fib1 := 1;
case {
    n < 0 : fibresult := 0;
    n = 1 : fibresult := 1;
    else :
        for i = 2 to n do {
            fibresult := fib0 + fibl;
            fib0 := fibl;
            fib1 := fibresult;
        }
    }
return fibresult;
}
```


## Recursion Summary

- Recursion may simplify programming, but beware of generating large numbers of calls
, Function calls can be expensive in terms of time and space
- Be sure to get the base case(s) correct!
- Each step must get you closer to the base case


## Motivation for Algorithm Analysis

- Suppose you are given two algorithms A and B for solving a problem
- The running times $T_{A}(N)$ and $T_{B}(N)$ of $A$ and $B$ as a function of input size N are given


Which is better?

## More Motivation

- For large $N$, the running time of $A$ and $B$



## Asymptotic Behavior

- The "asymptotic" performance as $\mathrm{N} \rightarrow \infty$, regardless of what happens for small input sizes N , is generally most important
- Performance for small input sizes may matter in practice, if you are sure that small N will be common forever
- We will compare algorithms based on how they scale for large values of N


## Order Notation (one more time)

- Mainly used to express upper bounds on time of algorithms. " $n$ " is the size of the input.
- $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n}))$ if there are constants c and $\mathrm{n}_{0}$ such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$.
, 10000n $+10 n \log _{2} n=O(n \log n)$
, $00001 n^{2} \neq O(n \log n)$
- Order notation ignores constant factors and low order terms.


## Why Order Notation

- Program performance may vary by a constant factor depending on the compiler and the computer used.
- In asymptotic performance ( $\mathrm{n} \rightarrow \infty$ ) the low order terms are negligible.


## Some Basic Time Bounds

- Logarithmic time is $\mathrm{O}(\log n)$
- Linear time is $O(n)$
- Quadratic time is $0\left(\mathrm{n}^{2}\right)$
- Cubic time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Polynomial time is $O\left(n^{k}\right)$ for some $k$.
- Exponential time is $\mathrm{O}\left(\mathrm{c}^{n}\right)$ for some $\mathrm{c}>1$.


## Kinds of Analysis

- Asymptotic - uses order notation, ignores constant factors and low order terms.
- Upper bound vs. lower bound
- Worst case - time bound valid for all inputs of length n.
- Average case - time bound valid on average requires a distribution of inputs.
- Amortized - worst case time averaged over a sequence of operations.
- Others - best case, common case ( $80 \%-20 \%$ ) etc.

