Fundamentals

CSE 373

Data Structures

Lecture 5

Mathematical Background

- Today, we will review:
 - Logs and exponents
 - > Series
 - > Recursion
 - Motivation for Algorithm Analysis

Powers of 2

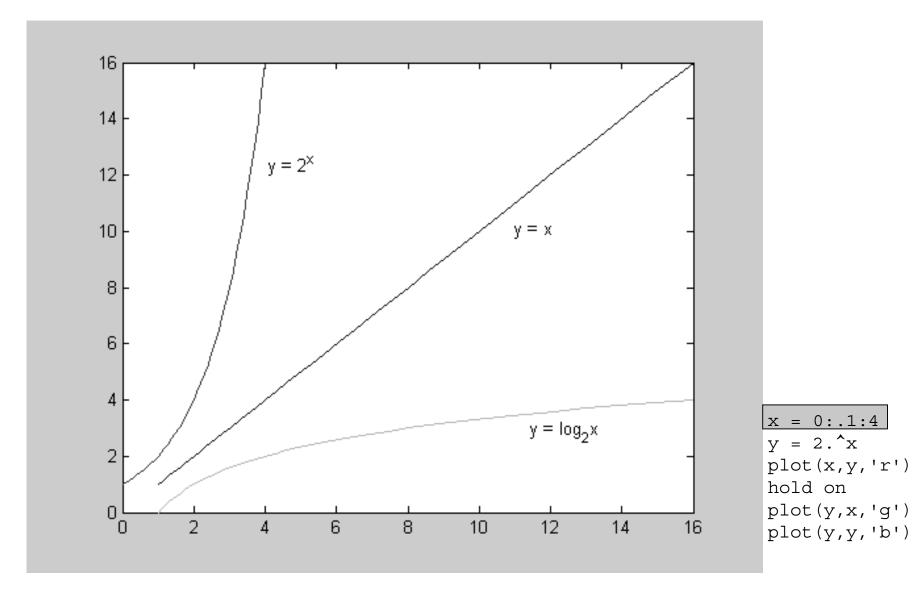
- Many of the numbers we use in Computer Science are powers of 2
- Binary numbers (base 2) are easily represented in digital computers
 - each "bit" is a 0 or a 1
 - 3 20 =1, 21 =2, 22 =4, 23 =8, 24 =16,..., 210 =1024 (1K)
 - >, an n-bit wide field can hold 2ⁿ positive integers:
 - $0 \le k \le 2^{n}-1$

Unsigned binary numbers

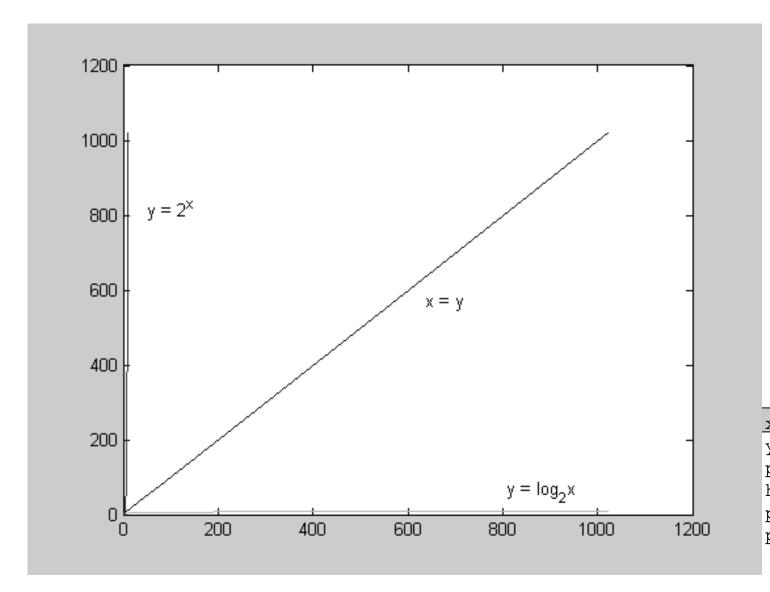
- For unsigned numbers in a fixed width field
 - > the minimum value is 0
 - > the maximum value is 2ⁿ-1, where n is the number of bits in the field
 - The value is $\sum_{i=0}^{i=n-1} a_i 2^i$
- Each bit position represents a power of 2 with $a_i = 0$ or $a_i = 1$

Logs and exponents

- Definition: $log_2 x = y means x = 2^y$
 - $> 8 = 2^3$, so $\log_2 8 = 3$
 - \Rightarrow 65536= 2¹⁶, so $\log_2 65536 = 16$
- Notice that log₂x tells you how many bits are needed to hold x values
 - > 8 bits holds 256 numbers: 0 to 2^{8} -1 = 0 to 255
 - $\log_2 256 = 8$



x, 2^x and $log_2 x$



x = 0:10
y = 2.^x
plot(x,y,'r')
hold on
plot(y,x,'g')
plot(y,y,'b')

2x and log₂x

Floor and Ceiling

$$|2.7| = 2$$
 $|-2.7| = -3$ $|2| = 2$

$$X$$
 Ceiling function: the smallest integer $\geq X$

$$\begin{bmatrix} 2.3 \end{bmatrix} = 3$$
 $\begin{bmatrix} -2.3 \end{bmatrix} = -2$ $\begin{bmatrix} 2 \end{bmatrix} = 2$

Facts about Floor and Ceiling

1.
$$X-1<|X|\leq X$$

2.
$$X \leq \lceil X \rceil < X + 1$$

3.
$$|n/2| + [n/2] = n$$
 if n is an integer

Properties of logs (of the mathematical kind)

- We will assume logs to base 2 unless specified otherwise
- log AB = log A + log B
 - \rightarrow A=2 log_2A and B=2 log_2B
 - $AB = 2^{\log_2 A} \cdot 2^{\log_2 B} = 2^{\log_2 A + \log_2 B}$
 - \rightarrow so $log_2AB = log_2A + log_2B$
 - > [note: log AB ≠ log A•log B]

Other log properties

- $\log A/B = \log A \log B$
- $log(A^B) = B log A$
- log log X < log X < X for all X > 0
 - \rightarrow log log X = Y means $2^{2^{Y}} = X$
 - > log X grows slower than X
 - called a "sub-linear" function

A log is a log is a log

 Any base x log is equivalent to base 2 log within a constant factor

$$\begin{aligned} log_x B &= log_x B \\ B &= 2^{log_2 B} & x^{log_x B} &= B \\ x &= 2^{log_2 x} & (2^{log_2 x})^{log_x B} &= 2^{log_2 B} \\ 2^{log_2 x \log_x B} &= 2^{log_2 B} \\ log_2 x log_x B &= log_2 B \\ log_x B &= \frac{log_2 B}{log_2 x} \end{aligned}$$

Arithmetic Series

•
$$S(N) = 1 + 2 + ... + N = \sum_{i=1}^{N} i$$

The sum is

$$\rightarrow$$
 S(1) = 1

$$S(2) = 1+2 = 3$$

$$S(3) = 1+2+3 = 6$$

Why is this formula useful when you analyze algorithms?

Algorithm Analysis

Consider the following program segment:

```
x:= 0;
for i = 1 to N do
  for j = 1 to i do
  x := x + 1;
```

What is the value of x at the end?

Analyzing the Loop

 Total number of times x is incremented is the number of "instructions" executed

$$= 1+2+3+...=\sum_{i=1}^{N}i=\frac{N(N+1)}{2}$$

- You've just analyzed the program!
 - Running time of the program is proportional to N(N+1)/2 for all N
 - \rightarrow O(N²)

Analyzing Mergesort

```
Mergesort(p : node pointer) : node pointer {
Case {
  p = null : return p; //no elements
  p.next = null : return p; //one element
  else
    d : duo pointer; // duo has two fields first, second
    d := Split(p);
    return Merge (Mergesort (d.first), Mergesort (d.second));
            T(n) is the time to sort n items.
            T(0), T(1) \le c
           T(n) \le T(|n/2|) + T(\lceil n/2 \rceil) + dn
```

Mergesort Analysis Upper Bound

```
T(n) \le 2T(n/2) + dn Assuming n is a power of 2
    \leq 2(2T(n/4) + dn/2) + dn
    = 4T(n/4) + 2dn
    \leq 4(2T(n/8) + dn/4) + 2dn
    = 8T(n/8) + 3dn
    \leq 2^k T(n/2^k) + kdn
    = nT(1) + kdn if n = 2^k
                                 n = 2^k, k = log n
    \leq cn + dn \log_2n
    = O(n logn)
```

Recursion Used Badly

Classic example: Fibonacci numbers F_n

$$F_0 = 0$$
, $F_1 = 1$ (Base Cases)

Rest are sum of preceding two $F_n = F_{n-1} + F_{n-2}$ (n > 1)

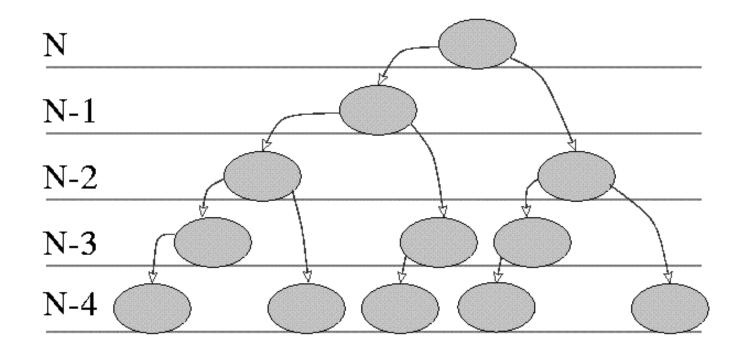
Leonardo Pisano Fibonacci (1170-1250)

Recursive Procedure for Fibonacci Numbers

```
fib(n : integer): integer {
   Case {
    n < 0 : return 0;
    n = 1 : return 1;
    else : return fib(n-1) + fib(n-2);
   }
}</pre>
```

- Easy to write: looks like the definition of F_n
- But, can you spot the big problem?

Recursive Calls of Fibonacci Procedure



Re-computes fib(N-i) multiple times!

Fibonacci Analysis Lower Bound

T(n) is the time to compute fib(n).

$$T(0), T(1) \ge 1$$

$$T(n) \ge T(n-1) + T(n-2)$$

It can be shown by induction that $T(n) \ge \phi^{n-2}$ where

$$\phi = \frac{1+\sqrt{5}}{2} \approx 1.62$$

Iterative Algorithm for Fibonacci Numbers

```
fib_iter(n : integer): integer {
fib0, fib1, fibresult, i : integer;
fib0 := 0; fib1 := 1;
case {
    n < 0 : fibresult := 0;
    n = 1 : fibresult := 1;
    else :
        for i = 2 to n do {
            fibresult := fib0 + fib1;
            fib1 := fibresult;
        }
    }
return fibresult;
}</pre>
```

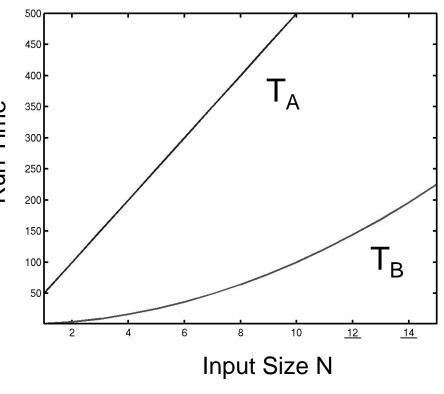
Recursion Summary

- Recursion may simplify programming, but beware of generating large numbers of calls
 - Function calls can be expensive in terms of time and space
- Be sure to get the base case(s) correct!
- Each step must get you closer to the base case

Motivation for Algorithm Analysis

 Suppose you are given two algorithms
 A and B for solving a problem

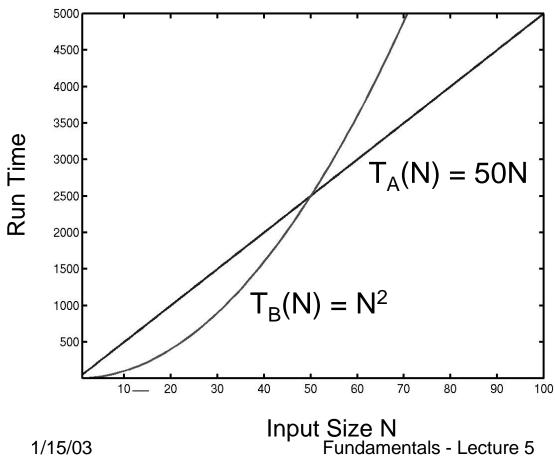
The running times
 T_A(N) and T_B(N) of A
 and B as a function of
 input size N are given



Which is better?

More Motivation

For large N, the running time of A and B



Now which algorithm would you choose?

Asymptotic Behavior

- The "asymptotic" performance as N → ∞, regardless of what happens for small input sizes N, is generally most important
- Performance for small input sizes may matter in practice, if you are <u>sure</u> that <u>small</u> N will be common <u>forever</u>
- We will compare algorithms based on how they scale for large values of N

Order Notation (one more time)

- Mainly used to express upper bounds on time of algorithms. "n" is the size of the input.
- T(n) = O(f(n)) if there are constants c and n_0 such that $T(n) \le c f(n)$ for all $n \ge n_0$.
 - \rightarrow 10000n + 10 n log₂ n = O(n log n)
 - > .00001 $n^2 \neq O(n \log n)$
- Order notation ignores constant factors and low order terms.

Why Order Notation

- Program performance may vary by a constant factor depending on the compiler and the computer used.
- In asymptotic performance (n →∞) the low order terms are negligible.

Some Basic Time Bounds

- Logarithmic time is O(log n)
- Linear time is O(n)
- Quadratic time is 0(n²)
- Cubic time is O(n³)
- Polynomial time is O(n^k) for some k.
- Exponential time is $O(c^n)$ for some c > 1.

Kinds of Analysis

- Asymptotic uses order notation, ignores constant factors and low order terms.
- Upper bound vs. lower bound
- Worst case time bound valid for all inputs of length n.
- Average case time bound valid on average requires a distribution of inputs.
- Amortized worst case time averaged over a sequence of operations.
- Others best case, common case (80%-20%) etc.