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Readings

• Reading 
› Section 4.4, 
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Binary Search Tree - Best 
Time

• All BST operations are O(d), where d is 
tree depth

• minimum d is                   for a binary tree 
with N nodes
› What is the best case tree? 
› What is the worst case tree?

• So, best case running time of BST 
operations is O(log N)

 Nlogd 2=
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Binary Search Tree - Worst 
Time

• Worst case running time is O(N) 
› What happens when you Insert elements in 

ascending order?
• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

› Problem: Lack of “balance”: 
• compare depths of left and right subtree

› Unbalanced degenerate tree



1/24/02 AVL Trees - Lecture 8 5

Balanced and unbalanced BST
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Approaches to balancing trees

• Don't balance
› May end up with some nodes very deep

• Strict balance
› The tree must always be balanced perfectly

• Pretty good balance
› Only allow a little out of balance

• Adjust on access
› Self-adjusting



1/24/02 AVL Trees - Lecture 8 7

Balancing Binary Search 
Trees

• Many algorithms exist for keeping 
binary search trees balanced
› Adelson-Velskii and Landis (AVL) trees

(height-balanced trees) 

› Weight-balanced trees
› Splay trees and other self-adjusting trees

› B-trees and other multiway search trees
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Perfect Balance
• Want a complete tree after every operation

› tree is full except possibly in the lower right

• This is expensive
› For example, insert 2 in the tree on the left and 

then rebuild as a complete tree

Insert 2 &
complete tree
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AVL - Good but not Perfect 
Balance

• AVL trees are height-balanced binary 
search trees

• Balance factor of a node
› height(left subtree) - height(right subtree)

• An AVL tree has balance factor 
calculated at every node
› For every node, heights of left and right 

subtree can differ by no more than 1
› Store current heights in each node
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Height of an AVL Tree

• N(h) = minimum number of nodes in an 
AVL tree of height h.

• Basis
› N(0) = 1, N(1) = 2

• Induction
› N(h) = N(h-1) + N(h-2) + 1

• Solution (recall Fibonacci analysis)
› N(h) > φh (φ ≈ 1.62) h-1

h-2

h
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Height of an AVL Tree

• N(h) > φh (φ ≈ 1.62)
• Suppose we have n nodes in an AVL 

tree of height h.
› n > N(h) 

› n > φh hence logφ n > h  (relatively well 
balanced tree!!)

› h < 1.44 log2n (i.e., Find takes O(logn))
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Node Heights
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Node Heights after Insert 7
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Insert and Rotation in AVL 
Trees

• Insert operation may cause balance factor 
to become 2 or –2 for some node 
› only nodes on the path from insertion point to 

root node have possibly changed in height
› So after the Insert, go back up to the root 

node by node, updating heights
› If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation around 
the node
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Single Rotation in an AVL 
Tree
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Let the node that needs rebalancing be α.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four 
separate rotation algorithms.

Insertions in AVL Trees
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AVL Insertion: Outside Case
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j
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Inserting into X
destroys the AVL 
property at node j

AVL Insertion: Outside Case
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Do a “right rotation”

AVL Insertion: Outside Case

h

h+1 h



1/24/02 AVL Trees - Lecture 8 20
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Do a “right rotation”

Single right rotation
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j

k

X Y Z

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!
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AVL Insertion: Inside Case

Consider a valid
AVL subtree
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Inserting into Y 
destroys the
AVL property
at node j 
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AVL Insertion: Inside Case

Does “right rotation”
restore balance?
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“Right rotation”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case
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Consider the structure
of subtree Y… j
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AVL Insertion: Inside Case
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Y = node i and
subtrees V and W

AVL Insertion: Inside Case
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AVL Insertion: Inside Case

We will do a left-right 
“double rotation” . . .
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Double rotation : first rotation

left rotation complete
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Double rotation : second 
rotation

Now do a right rotation
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jk

X V ZW

i

Double rotation : second 
rotation

right rotation complete

Balance has been 
restored

hh h or h-1
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Implementation

balance (1,0,-1)

key

rightleft

No need to keep the height; just the difference in height,      
i.e. the balance factor; this has to be modified on the path of 
insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won’t 
need to go back up the tree
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Single Rotation

RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}

X

Y Z

n

You also need to 
modify the heights 
or balance factors 
of  n and p

Insert
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Double Rotation

• Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) {
????
}

X

n

V W

Z
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AVL Tree Deletion

• Similar but more complex than insertion
› Rotations and double rotations needed to 

rebalance
› Imbalance may propagate upward so that 

many rotations may be needed.
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Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the 

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use

other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run time for 

many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees
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Double Rotation Solution

DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);
}
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