AVL Trees

CSE 373 Data Structures Lecture 8

Readings

- Reading
 - > Section 4.4,

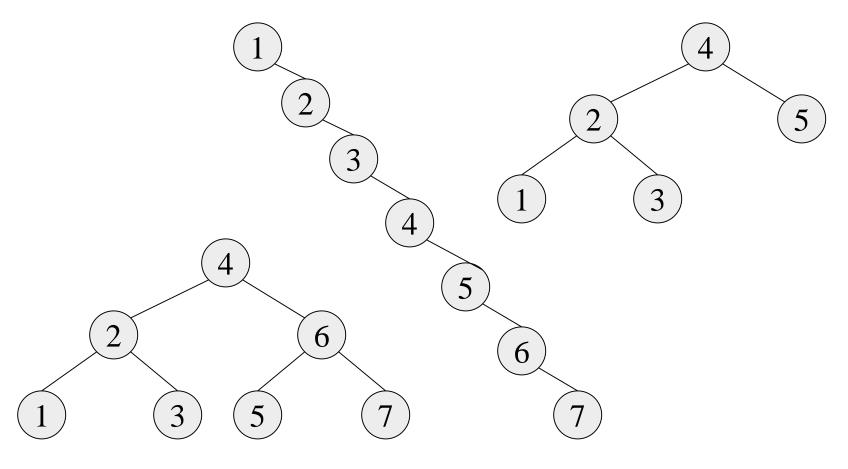
Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- minimum d is $d = \lfloor \log_2 N \rfloor$ for a binary tree with N nodes
 - > What is the best case tree?
 - > What is the worst case tree?
- So, best case running time of BST operations is O(log N)

Binary Search Tree - Worst Time

- Worst case running time is O(N)
 - What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - > Problem: Lack of "balance":
 - compare depths of left and right subtree
 - > Unbalanced degenerate tree

Balanced and unbalanced BST



1/24/02

Approaches to balancing trees

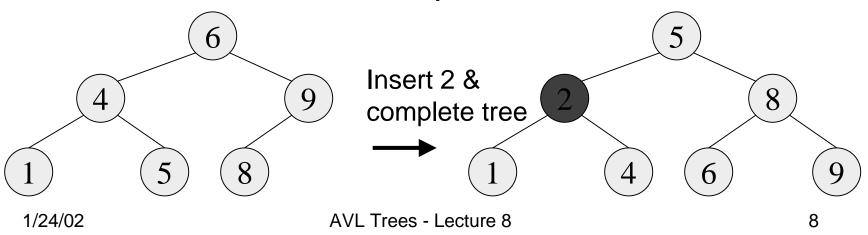
- Don't balance
 - > May end up with some nodes very deep
- Strict balance
 - > The tree must always be balanced perfectly
- Pretty good balance
 - > Only allow a little out of balance
- Adjust on access
 - > Self-adjusting

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - > Weight-balanced trees
 - Splay trees and other self-adjusting trees
 - > B-trees and other multiway search trees

Perfect Balance

- Want a complete tree after every operation
 tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree



AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
 height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - > Store current heights in each node

Height of an AVL Tree

- N(h) = minimum number of nodes in an AVL tree of height h.
- Basis

>
$$N(0) = 1$$
, $N(1) = 2$

Induction

N(h) = N(h-1) + N(h-2) + 1

- Solution (recall Fibonacci analy
 - $\ \ N(h) \ge \phi^h \quad (\phi \approx 1.62)$

h-2

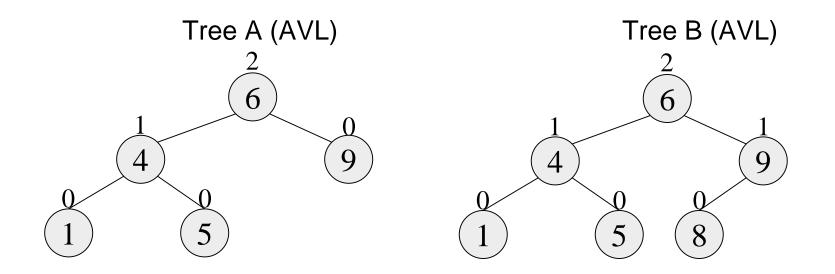
h-1

h

Height of an AVL Tree

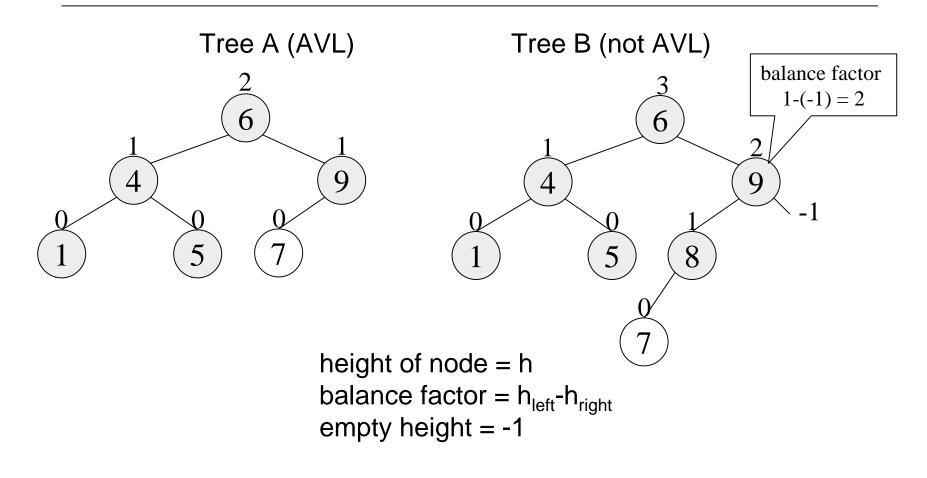
- $N(h) \ge \phi^h$ ($\phi \approx 1.62$)
- Suppose we have n nodes in an AVL tree of height h.
 - $n \ge N(h)$
 - n ≥ φ^h hence log_φ n ≥ h (relatively well balanced tree!!)
 - > $h \leq 1.44 \log_2 n$ (i.e., Find takes O(logn))

Node Heights



height of node = hbalance factor = h_{left} - h_{right} empty height = -1

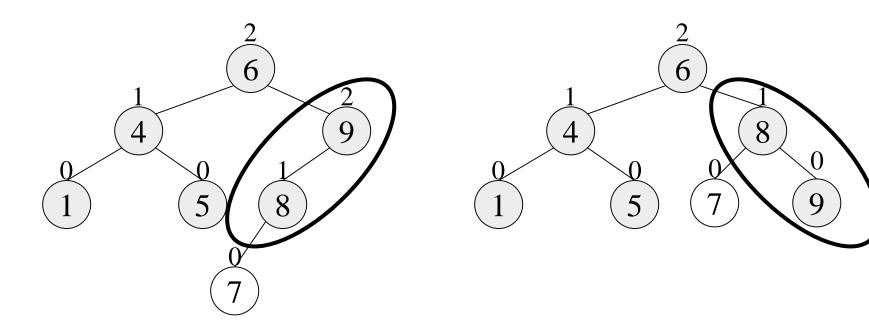
Node Heights after Insert 7



Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}h_{right}) is 2 or –2, adjust tree by *rotation* around the node

Single Rotation in an AVL Tree



Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

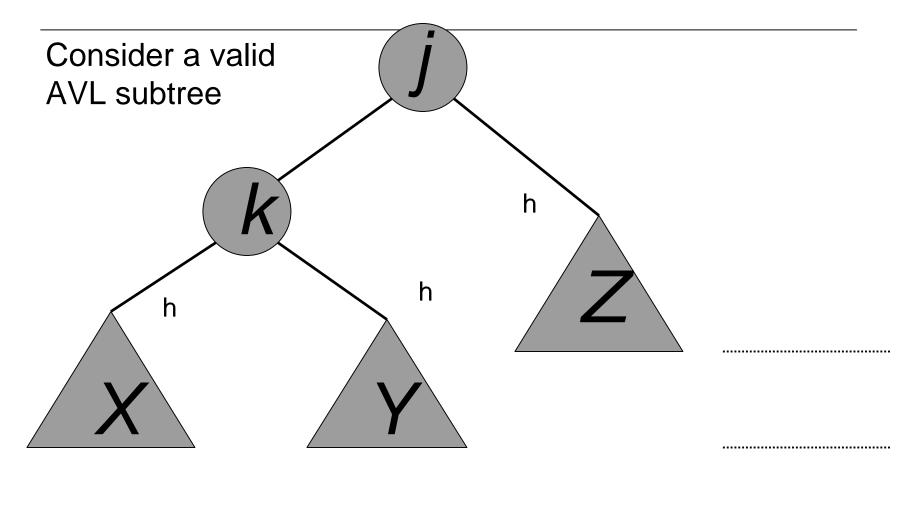
Outside Cases (require single rotation) :

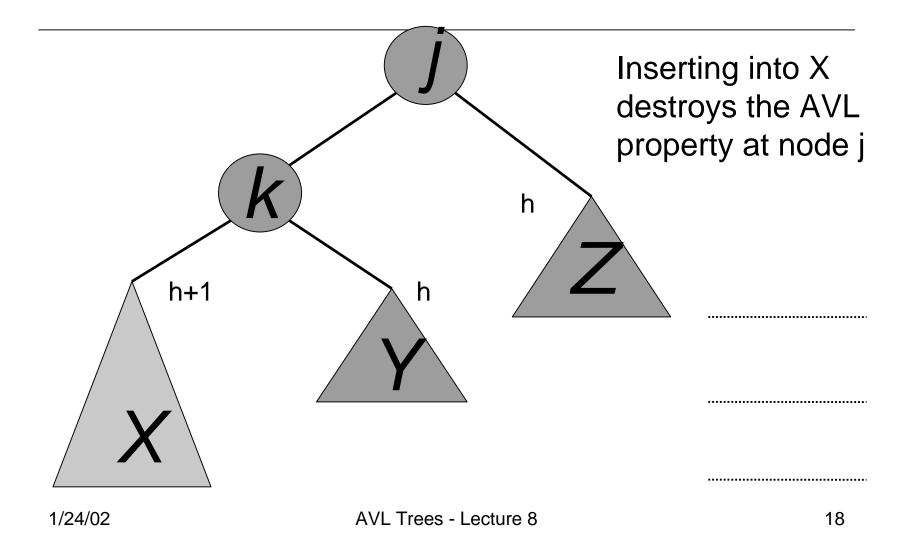
1. Insertion into left subtree of left child of α .

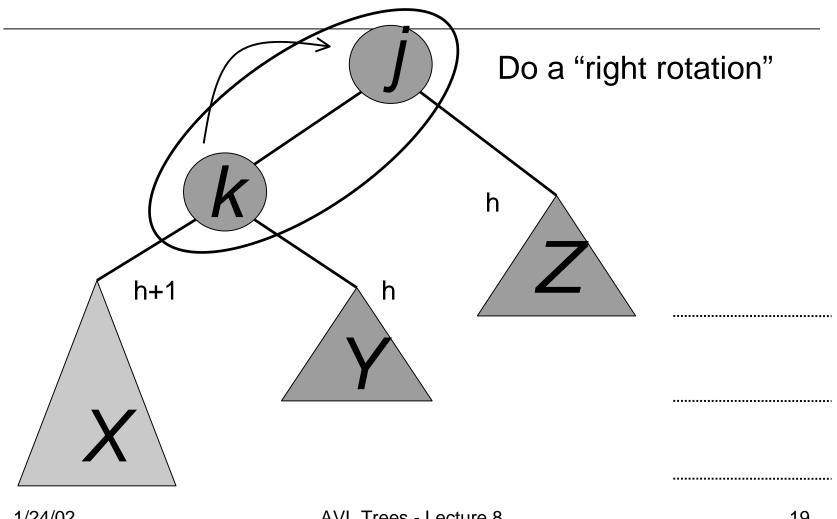
2. Insertion into right subtree of right child of α . Inside Cases (require double rotation) :

- 3. Insertion into right subtree of left child of α .
- 4. Insertion into left subtree of right child of α .

The rebalancing is performed through four separate rotation algorithms.

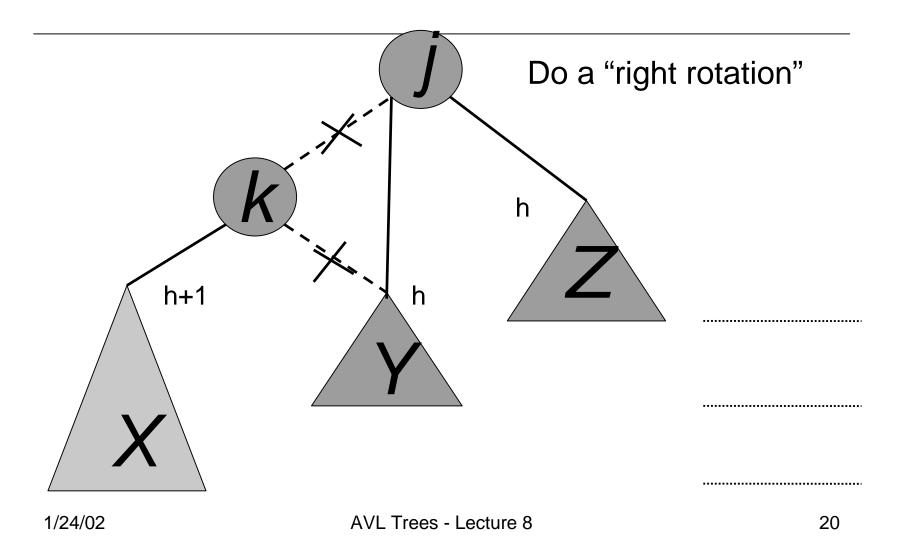




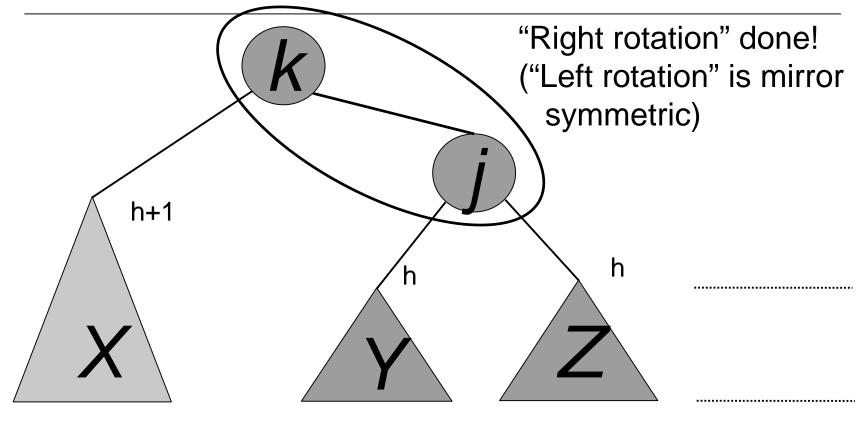


1/24/02

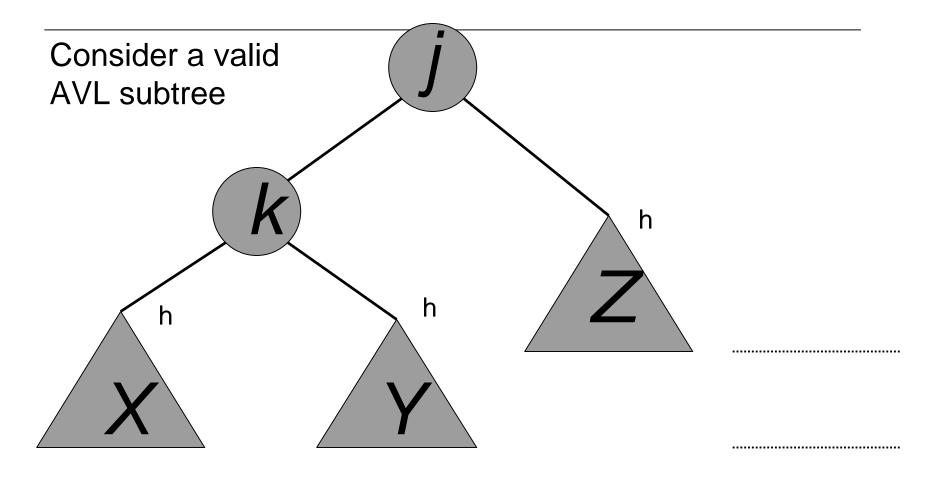
Single right rotation

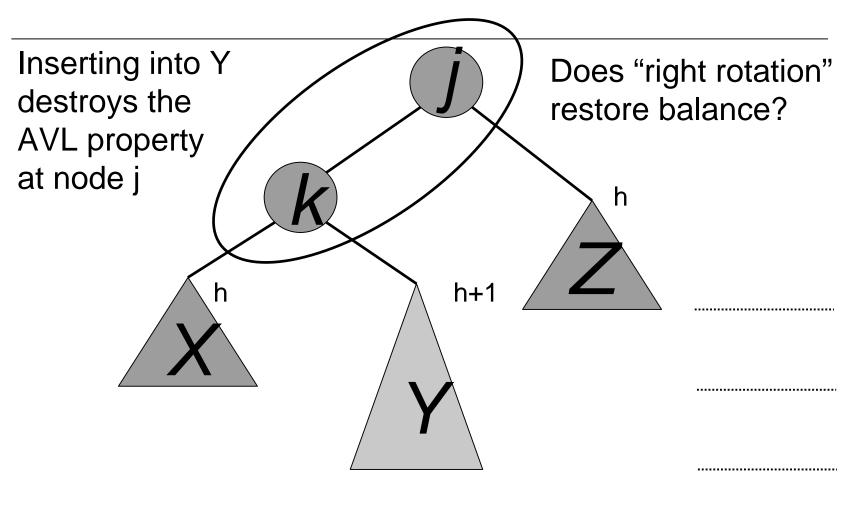


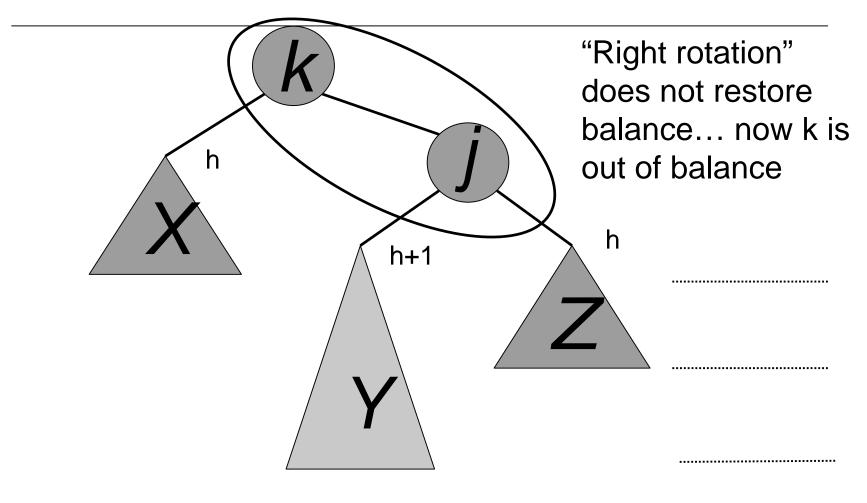
Outside Case Completed

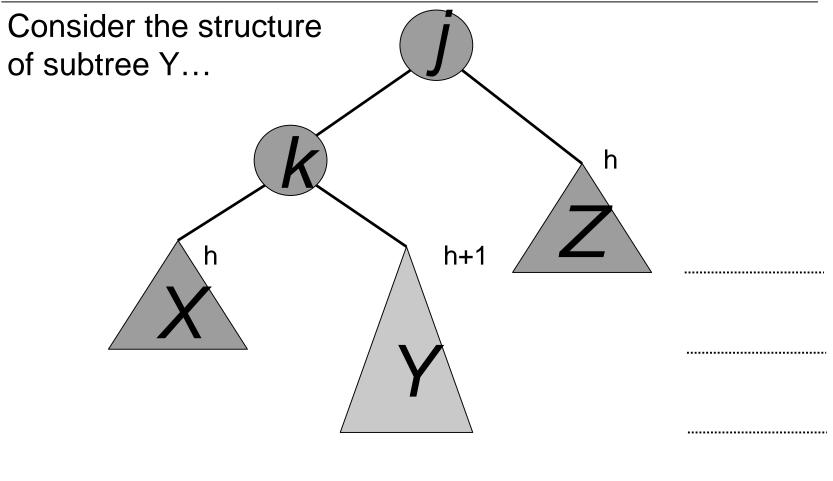


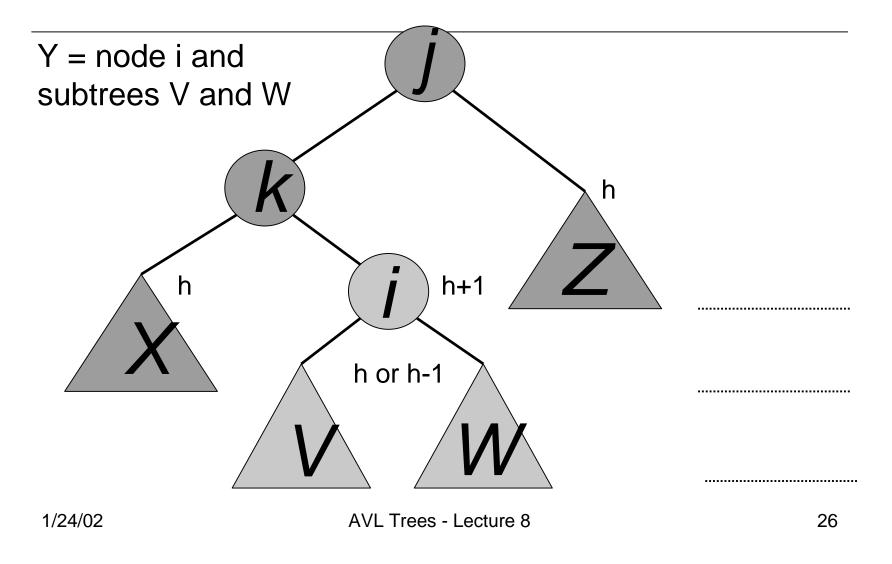
AVL property has been restored!

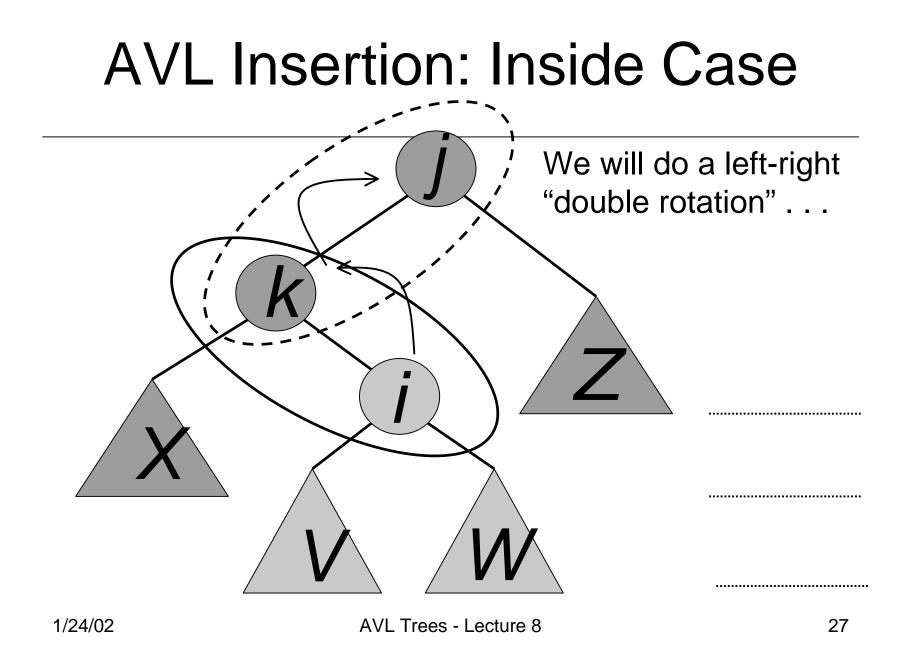




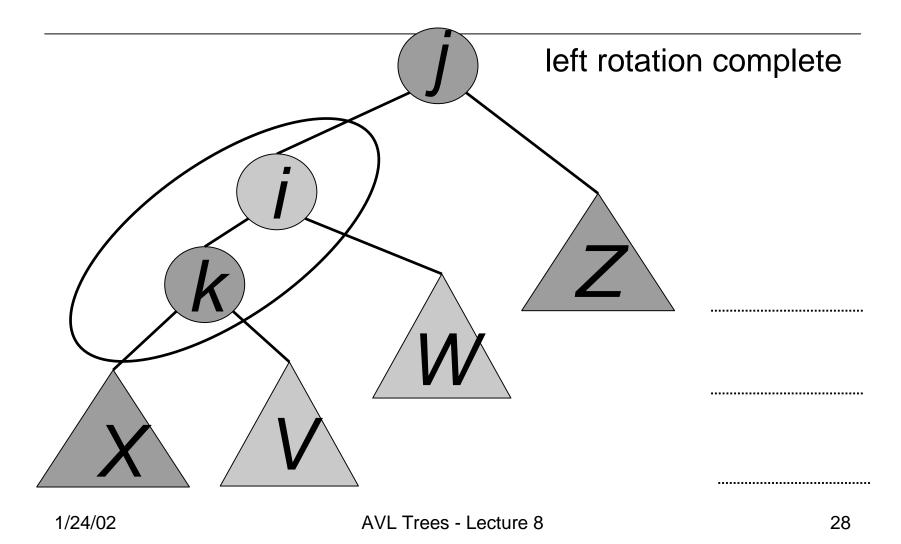


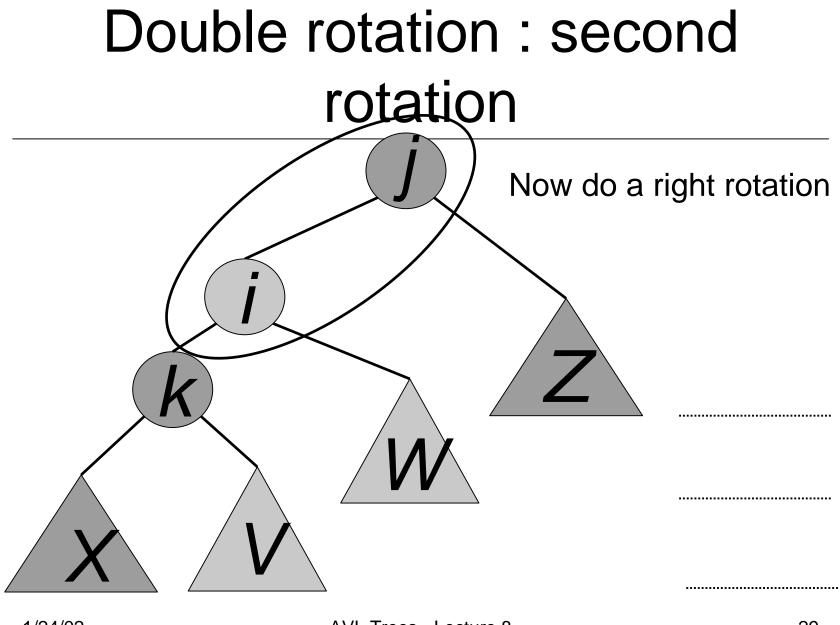






Double rotation : first rotation



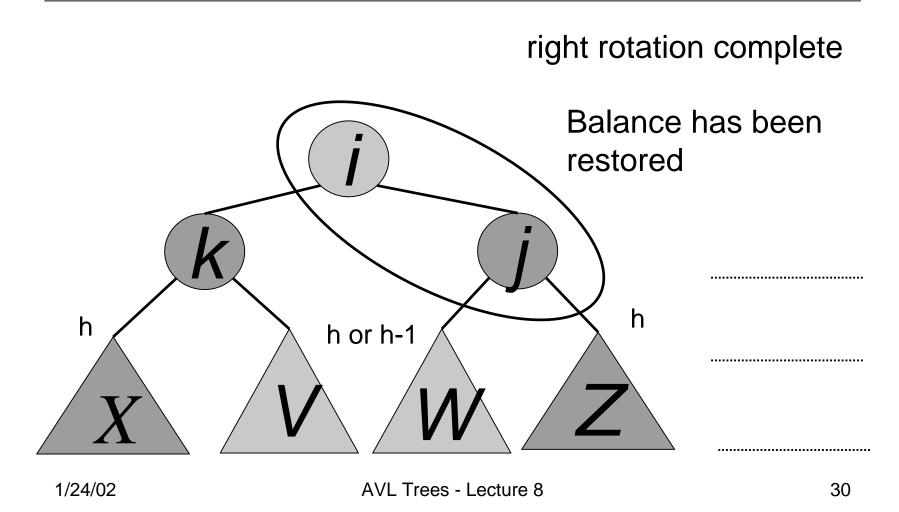


1/24/02

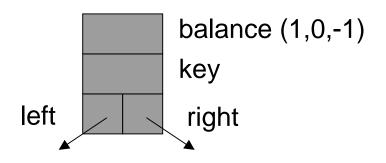
AVL Trees - Lecture 8

29

Double rotation : second rotation



Implementation



No need to keep the height; just the difference in height, i.e. the balance factor; this has to be modified on the path of insertion even if you don't perform rotations

Once you have performed a rotation (single or double) you won't need to go back up the tree

Single Rotation

```
RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}
You also need to
modify the heights
or balance factors
of n and p
```

Double Rotation

Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) { ???? n **AVL Trees - Lecture 8** 33

AVL Tree Deletion

- Similar but more complex than insertion
 - Rotations and double rotations needed to rebalance
 - Imbalance may propagate upward so that many rotations may be needed.

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. Search is O(log N) since AVL trees are always balanced.
- 2. Insertion and deletions are also O(logn)
- 3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

- 1. Difficult to program & debug; more space for balance factor.
- 2. Asymptotically faster but rebalancing costs time.
- 3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
- 4. May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

Double Rotation Solution

DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);
}

