
HANDOUT ON
THE VISUAL STACK APPLET

FOR CSE 373

Steve Tanimoto
University of Washington

(C) copyright, 2004

1 INTRODUCING THE VISUAL STACK APPLET 1

1 Introducing the Visual Stack Applet

Let us now take a look at a computer program that illustrates the operation of
a stack. First, we’ll try operating the program. Then, we’ll examine the Java
code for it.

Although one purpose of this applet is to make it clear what a stack does, a
more important goal is to show how the program itself works to implement and
illustrate a data structure. The program follows a “visual applet” methodology
that offers a combination of pedagogical power and implementation simplicity
that we’ll use often in this book.

2 Using The Visual Stack Applet

You can start up the Visual Stack Applet by firing up any Java-enhanced
browser (such as Mozilla, Netscape, or Microsoft Internet Explorer) and going to
the web page: http://ole.cs.washington.edu/EDSA/VisStackApplet.html.

You interact with the applet by entering textual commands into the com-
mand box and clicking the Execute button. The applet loads up with an example
sequence of commands that you can run immediately.

The commands are probably self-explanatory, but here is a brief description.
There are essentially two kinds of commands: commands that correspond to op-
erations on the data structure itself, such as PUSH and POP, and commands to
control the presentation or the reporting. For example, the DELAY command
sets the number of milliseconds that the applet will wait after performing one
operation before starting the next. The STATS command causes some perfor-
mance information to be printed into the history window. If you would like to
see the contents of the history window, click on the History button.

3 How it Works

Let us now examine the Java code for the Visual Stack Applet in detail. This
code can be easily edited to create visual applets for many other data structures
and algorithms. There are just a few slighly tricky Java features used here that
might not be completely obvious if you are new to them. These include the
use of a ScrollPane object for the main graphics area, and the use of a separate
Thread object for handling the animation of the data structure.

The source file for this program is available in machine-readable form at the
following URL:

http://ole.cs.washington.edu/EDSA/VisStackApplet.java.
All the code is shown below, but it is broken up by explanatory text. You

can tell the difference between the code and the text by the fonts in which
they are printed: the code is in Courier while the explanatory text is in Times
Roman.

The file starts off with some Java import commands. The program uses
classes in the Swing, AWT, AWT Event, and Utilities libraries.

3 HOW IT WORKS 2

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

Next is some documentation, in the JavaDoc format. Following that is the
beginning of the definition of the VisStackApplet class itself, which is defined
to be a subclass of JApplet.

/*
* VisStackApplet is
* an applet that can be modified to produce an interactive
* demonstration for a data structure. Written for CSE 373,
* it is currently set up to show a stack.
* It takes textual commands in a TextArea and when the user
* clicks on the Execute button, it processes the commands,
* updating the display as it goes.
*
* @Version of June 14, 2004
* @author Steve Tanimoto, Copyright, 2004.
*
*/
public class VisStackApplet extends JApplet
implements ActionListener, Runnable {

ScrolledPanel visPanel; //Where to paint graphics
MyScrollPane msp;
Button executeButton;
Button historyButton;
TextArea userInputText;
TextArea history;
JFrame historyFrame;
JTextField statusLine;
MyStack theStack; // The data structure being demonstrated
Font stackFont;
int cellHeight = 20; // For drawing the stack.
int cellWidth = 200; // How wide to plot pink rectangles
int cellGap = 4; // vertical space between successive cells
int topMargin = 25; // Space above top of stack.
int fontSize = 16; // Height of font for displaying stack elements.
int leftMargin = 20; // x value for left side of cells
int bottomMargin = 10; // Minimum space betw. bot. of
// visPanel and bot. of lowest cell.

int leftOffset = 5; // space between left side of cell
// and contents string.

int delay = 300; // default is to wait 300 ms between updates.
Thread displayThread = null;

3 HOW IT WORKS 3

The applet initialization method is defined next. Most of the code for it creates
the various graphical user interface components such as the scrolled panel and
the two buttons.

public void init() {
setSize(300,300); // default size of applet.
visPanel = new ScrolledPanel();
visPanel.setPreferredSize(new Dimension(400,400));
msp = new MyScrollPane(visPanel);
msp.setPreferredSize(new Dimension(400,200));

Container c = getContentPane();
c.setLayout(new BorderLayout());
c.add(msp, BorderLayout.CENTER);
JPanel buttons = new JPanel();
buttons.setLayout(new FlowLayout());
JPanel controls = new JPanel();
controls.setLayout(new BorderLayout());
executeButton = new Button("Execute");
executeButton.addActionListener(this);
buttons.add(executeButton);
historyButton = new Button("History");
historyButton.addActionListener(this);
buttons.add(historyButton);
userInputText = new TextArea(";Enter commands here.");
statusLine = new JTextField();
statusLine.setBackground(Color.lightGray);
controls.add(buttons, BorderLayout.WEST);
controls.add(userInputText, BorderLayout.CENTER);
controls.add(statusLine, BorderLayout.SOUTH);
controls.setPreferredSize(new Dimension(400,100));
c.add(controls, BorderLayout.SOUTH);
c.validate();

theStack = new MyStack();
stackFont = new Font("Helvetica", Font.PLAIN, 20);
history = new TextArea("VisStackApplet history:\n", 20, 40);

}

The scrolled panel itself will be responsible for painting the data structure after
each operation. The browser will call the applet’s paintComponent method,
which in turn will call the scrolled panel’s paintComponent method, which is
defined here. It first paints its background in the standard JPanel way, and then
it calls paintStack to actually render the stack data structure that is featured
in the program.

class ScrolledPanel extends JPanel {

3 HOW IT WORKS 4

public void paintComponent(Graphics g) {
super.paintComponent(g);
paintStack(g);

}
}

The following code customizes the built-in class JScrollPane so that it will
always show scroll bars.

class MyScrollPane extends JScrollPane {
MyScrollPane(JPanel p) {
super(p,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

}
}

The stack is implemented internally using Java’s Vector class. This is conve-
nient, but the Vector is a somewhat heavyweight class to use for implementing
a stack.

class MyStack extends Vector {

int n; // number of elements in the stack
int npushes; // number of PUSH operations so far.
int npops; // number of POP operations so far.

void init() {
n = 0; npushes = 0; npops = 0;

}

void push(Object elt) {
add(n, elt);
n++;
npushes++;

}

Object pop() {
if (n == 0) { return null; }
Object o = lastElement();
n--;
npops++;
remove(n);
return o;

}
}

3 HOW IT WORKS 5

The following method, actionPerformed, provides an implementation of the
ActionListener interface, and it tells the Java environment what to do if the
user clicks on either of the two buttons.

public void actionPerformed(ActionEvent e) {
if (e.getActionCommand().equals("Execute")) {
displayThread = new Thread(this);
displayThread.start();
return;

}
if (e.getActionCommand().equals("History")) {
if (historyFrame == null) {
historyFrame = new JFrame("History of the VisStackApplet");
historyFrame.getContentPane().add(history);
historyFrame.setSize(new Dimension(300,300));

}
historyFrame.show();
System.out.println("Should have displaals("SIZE")) {
String stats = "Current number of elements: " +

th -= (cellHeight + cellGap);
}

}

Next is a method that examines the number of elements in the stack and figures
out whether the whole stack will fit on the scrolled panel. If not, it enlarges the
scrolled panel by just the right amount.

/**
* The following computes the height of the display area needed by the
* current stack, and if it won’t fit in the scrolled panel, it enlarges
* the scrolled panel. In the current implementation, the panel never
* gets smaller, even if the stack becomes empty. This could easily be
* changed.
*/
void checkScrolledPanelSize() {
int heightNeeded = topMargin + theStack.n * (cellHeight + cellGap)

+ cellHeight+ bottomMargin;
Dimension d = visPanel.getPreferredSize();
int currentHeight = (int) d.getHeight();
int currentWidth = (int) d.getWidth();
if (heightNeeded > currentHeight) {
visPanel.setPreferredSize(new Dimension(currentWidth,

heightNeeded));
visPanel.revalidate(); // Adjust the vertical scroll bar.

}
}

}

4 EXERCISES 6

The source file also includes, for the developer’s convenience, an actual command
sequence that can be copied and pasted into the command box of the applet
to test it. When developing an applet like this, it is helpful to create a test
sequence like this before actually writing the code, so that it can help guide the
implementation and testing from the very beginning.

/*
A sample command sequence for the applet is given below.
PUSH John
PUSH Mary
SIZE
POP
STATS
RESET
; This is a comment - we are beginning with a new stack.
DELAY 500 ; from here wait only 500 ms between updates
PUSH 3.14159
PUSH 25
PUSH 13
STATS
*/

4 Exercises

1. What is the purpose of the history window in the Visual Stack Applet?

2. Name at least three different statistics that could be reported for a session
involving the use of a stack.

3. Give a mathematical formula that tells how much space is required to
display a stack containing n data elements. Assume that the space is
described by two values: width and height, both of which are given in
units of pixels.

4. Modify the Visual Stack Applet so that it can be used as a calculator for
mathematical expressions given in a sort of postfix form. For example,
the formula (7 + 2) ∗ (15− 9) would be written

PUSH 7
PUSH 2
DO +
PUSH 15
PUSH 9
DO -
DO *
POP

4 EXERCISES 7

and the result returned would be 54. The DO command pops two ar-
guments off the stack, performs the requested arithmetic and pushes the
result back on the stack.

5. Modify the Visual Stack Applet so that the stack is displayed horizontally
instead of vertically, and make the top of the stack be at its right end.

6. Do the previous exercise except make the top of the stack be at its left
end.

7. Modify the Visual Stack Applet so that the stack’s top is located at the
bottom of the display.

8. Modify the Visual Stack Applet so that it contains two stacks, A and B.
Each command should then take one more argument than in the original
applet. For example,

PUSH A 15

should push the value 15 onto the first stack. The scrolled display panel
should always be high enough that the larger of the two stacks is accom-
modated. That way, both stacks are fully displayed.

