Introduction

CSE 373
Data Structures

Staff

e |nstructor
> Steven L. Tanimoto,

e TA's

> Erik Vee,
> Artem Zhurid,

29 March 2004 CSE 373 SP 04- Introduction

Steven L. Tanimoto

« Professor of Computer Science and Engineering
* Research: Applications of Visua Information Processing and
Artificia Intelligence in Learning and Teaching

29 March 2004 CSE 373 SP 04- Introduction

Web Page

« Allinfo is on the web page for CSE 373
>

> also known as
« http://www.cs.washington.edu/education/courses/373/04sp

29 March 2004 CSE 373 SP 04- Introduction

Office Hours

 Steve Tanimoto — 638 CSE (Allen Center)
> MF 2:30-3:20 or by appointment

 Erik Vee - to be announced

» Artem Zhurid —to be announced

29 March 2004 CSE 373 SP 04- Introduction

CSE 373 E-maill List

» Subscribe by going to the class web
page.

» E-mail list is used for posting
announcements by instructor and TAs.

e Itis your responsibility to subscribe. It
will turn out to be very helpful for
assignments hints, corrections etc.

29 March 2004 CSE 373 SP 04- Introduction

Computer Lab

« Math Sciences Computer Center
>

» We'll be using Java for the programming
assignments.
> Supports sharing on the web (with applets),

> Makes it easy to display data structures
graphically.

29 March 2004 CSE 373 SP 04- Introduction 7

Textbook

« Data Structures and Algorithms in Java, by
Goodrich and Tamassia, 2" (or 3'9) edition.

29 March 2004 CSE 373 SP 04- Introduction 8

Grading
» Assignments 25%
* Project 20%
* Midterm 20%
> Approximately May 3 (not definite yet)
* Final 30%
> 2:30-4:20 p.m. Wednesday, June 9, 2004

29 March 2004 CSE 373 SP 04- Introduction 9

Class Overview

Introduction to many of the basic data structures
used in computer software

> Understand the data structures

> Analyze the algorithms that use them

> Know when to apply them

Practice design and analysis of data structures.
Practice using these data structures by writing
programs.

Data structures are the plumbing and wiring of
programs.

29 March 2004 CSE 373 SP 04- Introduction 10

Goal

* You will understand

> what the tools are for storing and
processing common data types

> which tools are appropriate for which need
 So that you will be able to

> make good design choices as a developer,
project manager, or system customer

29 March 2004 CSE 373 SP 04- Introduction 11

Course Topics

* Introduction to Algorithm Analysis
* Lists, Stacks, Queues

 Search Algorithms and Trees

» Hashing and Heaps

* Sorting

« Disjoint Sets

» Graph Algorithms

29 March 2004 CSE 373 SP 04- Introduction 12

Reading

* Chapters 1, 2, and 3, Data Structures and
Algorithms in Java, by Goodrich and
Tamassia

> Very important chapter:
« 3on Analysis Tools

29 March 2004 CSE 373 SP 04- Introduction 13

Data Structures: What?

« Need to organize program data according to
problem being solved
» Abstract Data Type (ADT) - A data object and a
set of operations for manipulating it
> List ADT with operationsi nsert and del et e
> Stack ADT with operations push and pop
« Note similarity to Java classes
> private data structure and public methods

29 March 2004 CSE 373 SP 04- Introduction 14

Data Structures: Why?

* Program design depends crucially on how
data is structured for use by the program

> Implementation of some operations may become
easier or harder

> Speed of program may dramatically decrease or
increase

> Memory used may increase or decrease
> Debugging may be become easier or harder

29 March 2004 CSE 373 SP 04- Introduction 15

Terminology

¢ Abstract Data Type (ADT)

> Mathematical description of an object with set of
operations on the object. Useful building block.

Algorithm

> A high level, language independent, description of
a step-by-step process

« Data structure

> A specific family of algorithms for implementing an
abstract data type.

« Implementation of data structure

> A specific implementation in a specific language
29 March 2004 CSE 373 SP 04- Introduction

Algorithm Analysis: Why?

e Correctness:
> Does the algorithm do what is intended.
* Performance:
> What is the running time of the algorithm.
> How much storage does it consume.
« Different algorithms may correctly solve
a given task
> Which should | use?

29 March 2004 CSE 373 SP 04- Introduction 17

Iterative Algorithm for Sum

« Find the sum of the first numintegers
stored in an array v.

sun(v[]: integer array, num integer): integer{
tenp_sum integer ;
tenp_sum:= 0;
for i =0 to num- 1 do
tenp_sum:= v[i] + tenp_sum
return tenp_sum
}
Note the use of pseudocode

29 March 2004 CSE 373 SP 04- Introduction 18

Programming via Recursion

» Write a recursive function to find the
sum of the first numintegers stored in
array v.

sum (v[]: integer array, num integer): integer {
if num= 0 then
return 0 base case
el se .
return v[num1] + sun{v,num1); } recursve
case
}
29 March 2004 CSE 373 SP 04- Introduction 19

Pseudocode

* In the lectures algorithms will be

presented in pseudocode.

> This is very common in the computer
science literature

> Pseudocode is usually easily translated to
real code.

> This is programming language
independent

29 March 2004 CSE 373 SP 04- Introduction 20

Proof by Induction

e Basis Step: The algorithm is correct for
the base case (e.g. n=0) by inspection.

 Inductive Hypothesis (n=k): Assume
that the algorithm works correctly for the
first k cases, for any k.

 Inductive Step (n=k+1): Given the
hypothesis above, show that the k+1
case will be calculated correctly.

29 March 2004 CSE 373 SP 04- Introduction 21

Program Correctness by

lndiietinn
oo Caor

 Basis Step: sum(v,0) =0. v

* Inductive Hypothesis (n=k): Assume
sum(v,k) correctly returns sum of first k
elements of v, i.e. v[0] +v[1] +..+v[k- 1]

* Inductive Step (n=k+1): sum(v,n)
returns v[k] +sun{ v, k) which is the sum
of first k+1 elements of v. v/

29 March 2004 CSE 373 SP 04- Introduction 22

Algorithms vs Programs

 Proving correctness of an algorithm is very
important
> awell designed algorithm is guaranteed to work
correctly and its performance can be estimated
* Proving correctness of a program (an
implementation) is fraught with weird bugs

> Abstract Data Types are a way to bridge the gap
between mathematical algorithms and programs

29 March 2004 CSE 373 SP 04- Introduction 23

