Introduction

CSE 373
Data Structures

Staff

e |nstructor
> Steven L. Tanimoto,

e TA's

> Erik Vee,
> Artem Zhurid,
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Steven L. Tanimoto

« Professor of Computer Science and Engineering
* Research: Applications of Visua Information Processing and
Artificia Intelligence in Learning and Teaching
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Web Page

« Allinfo is on the web page for CSE 373
>

> also known as
« http://www.cs.washington.edu/education/courses/373/04sp
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Office Hours

 Steve Tanimoto — 638 CSE (Allen Center)
> MF 2:30-3:20 or by appointment

 Erik Vee - to be announced

» Artem Zhurid —to be announced
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CSE 373 E-maill List

» Subscribe by going to the class web
page.

» E-mail list is used for posting
announcements by instructor and TAs.

e Itis your responsibility to subscribe. It
will turn out to be very helpful for
assignments hints, corrections etc.
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Computer Lab

« Math Sciences Computer Center
>

» We'll be using Java for the programming
assignments.
> Supports sharing on the web (with applets),

> Makes it easy to display data structures
graphically.
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Textbook

« Data Structures and Algorithms in Java, by
Goodrich and Tamassia, 2" (or 3'9) edition.
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Grading
» Assignments 25%
* Project 20%
* Midterm 20%
> Approximately May 3 (not definite yet)
* Final 30%
> 2:30-4:20 p.m. Wednesday, June 9, 2004
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Class Overview

Introduction to many of the basic data structures
used in computer software

> Understand the data structures

> Analyze the algorithms that use them

> Know when to apply them

Practice design and analysis of data structures.
Practice using these data structures by writing
programs.

Data structures are the plumbing and wiring of
programs.
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Goal

* You will understand

> what the tools are for storing and
processing common data types

> which tools are appropriate for which need
 So that you will be able to

> make good design choices as a developer,
project manager, or system customer
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Course Topics

* Introduction to Algorithm Analysis
* Lists, Stacks, Queues

 Search Algorithms and Trees

» Hashing and Heaps

* Sorting

« Disjoint Sets

» Graph Algorithms
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Reading

* Chapters 1, 2, and 3, Data Structures and
Algorithms in Java, by Goodrich and
Tamassia

> Very important chapter:
« 3on Analysis Tools
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Data Structures: What?

« Need to organize program data according to
problem being solved
» Abstract Data Type (ADT) - A data object and a
set of operations for manipulating it
> List ADT with operationsi nsert and del et e
> Stack ADT with operations push and pop
« Note similarity to Java classes
> private data structure and public methods
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Data Structures: Why?

* Program design depends crucially on how
data is structured for use by the program

> Implementation of some operations may become
easier or harder

> Speed of program may dramatically decrease or
increase

> Memory used may increase or decrease
> Debugging may be become easier or harder
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Terminology

¢ Abstract Data Type (ADT)

> Mathematical description of an object with set of
operations on the object. Useful building block.

Algorithm

> A high level, language independent, description of
a step-by-step process

« Data structure

> A specific family of algorithms for implementing an
abstract data type.

« Implementation of data structure

> A specific implementation in a specific language
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Algorithm Analysis: Why?

e Correctness:
> Does the algorithm do what is intended.
* Performance:
> What is the running time of the algorithm.
> How much storage does it consume.
« Different algorithms may correctly solve
a given task
> Which should | use?
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Iterative Algorithm for Sum

« Find the sum of the first numintegers
stored in an array v.

sun(v[ ]: integer array, num integer): integer{
tenp_sum integer ;
tenp_sum:= 0;
for i =0 to num- 1 do
tenp_sum:= v[i] + tenp_sum
return tenp_sum
}
Note the use of pseudocode
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Programming via Recursion

» Write a recursive function to find the
sum of the first numintegers stored in
array v.

sum (v[ ]: integer array, num integer): integer {
if num= 0 then
return 0 base case
el se .
return v[num1] + sun{v,num1); } recursve
case
}
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Pseudocode

* In the lectures algorithms will be

presented in pseudocode.

> This is very common in the computer
science literature

> Pseudocode is usually easily translated to
real code.

> This is programming language
independent
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Proof by Induction

e Basis Step: The algorithm is correct for
the base case (e.g. n=0) by inspection.

 Inductive Hypothesis (n=k): Assume
that the algorithm works correctly for the
first k cases, for any k.

 Inductive Step (n=k+1): Given the
hypothesis above, show that the k+1
case will be calculated correctly.
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Program Correctness by

lndiietinn
oo Caor

 Basis Step: sum(v,0) =0. v

* Inductive Hypothesis (n=k): Assume
sum(v,k) correctly returns sum of first k
elements of v, i.e. v[ 0] +v[ 1] +..+v[ k- 1]

* Inductive Step (n=k+1): sum(v,n)
returns v[ k] +sun{ v, k) which is the sum
of first k+1 elements of v. v/
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Algorithms vs Programs

 Proving correctness of an algorithm is very
important
> awell designed algorithm is guaranteed to work
correctly and its performance can be estimated
* Proving correctness of a program (an
implementation) is fraught with weird bugs

> Abstract Data Types are a way to bridge the gap
between mathematical algorithms and programs
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