
1

Introduction

CSE 373
Data Structures

29 March 2004 CSE 373 SP 04- Introduction 2

Staff

• Instructor
› Steven L. Tanimoto, 

tanimoto@cs.washington.edu
• TA’s

› Erik Vee, env@cs.washington.edu
› Artem Zhurid, artem@cs.washington.edu

29 March 2004 CSE 373 SP 04- Introduction 3

Steven L. Tanimoto

• Professor of Computer Science and Engineering
• Research: Applications of Visual Information Processing and 

Artificial Intelligence in Learning and Teaching

29 March 2004 CSE 373 SP 04- Introduction 4

Web Page

• All info is on the web page for CSE 373
› http://www.cs.washington.edu/373
› also known as

• http://www.cs.washington.edu/education/courses/373/04sp

29 March 2004 CSE 373 SP 04- Introduction 5

Office Hours

• Steve Tanimoto – 638 CSE (Allen Center)
› MF 2:30-3:20 or by appointment 

• Erik Vee   – to be announced
• Artem Zhurid  – to be announced

29 March 2004 CSE 373 SP 04- Introduction 6

CSE 373 E-mail List

• Subscribe by going to the class web 
page.

• E-mail list is used for posting 
announcements by instructor and TAs.

• It is your responsibility to subscribe. It 
will turn out to be very helpful for 
assignments hints, corrections etc.



2

29 March 2004 CSE 373 SP 04- Introduction 7

Computer Lab

• Math Sciences Computer Center
› http://www.ms.washington.edu/

• We’ll be using Java for the programming 
assignments.
› Supports sharing on the web (with applets),
› Makes it easy to display data structures 

graphically.

29 March 2004 CSE 373 SP 04- Introduction 8

Textbook

• Data Structures and Algorithms in Java, by 
Goodrich and Tamassia, 2nd (or 3rd) edition.

29 March 2004 CSE 373 SP 04- Introduction 9

Grading
Estimated Breakdown:

• Assignments 25%
• Project 20%
• Midterm 20%

› Approximately May 3 (not definite yet)

• Final 30%
› 2:30-4:20 p.m. Wednesday, June  9, 2004 

29 March 2004 CSE 373 SP 04- Introduction 10

Class Overview

• Introduction to many of the basic data structures 
used in computer software
› Understand the data structures
› Analyze the algorithms that use them
› Know when to apply them

• Practice design and analysis of data structures.
• Practice using these data structures by writing 

programs.
• Data structures are the plumbing and wiring of 

programs.

29 March 2004 CSE 373 SP 04- Introduction 11

Goal

• You will understand
› what the tools are for storing and 

processing common data types
› which tools are appropriate for which need

• So that you will be able to
› make good design choices as a developer, 

project manager, or system customer

29 March 2004 CSE 373 SP 04- Introduction 12

Course Topics

• Introduction to Algorithm Analysis
• Lists, Stacks, Queues
• Search Algorithms and Trees
• Hashing and Heaps
• Sorting
• Disjoint Sets
• Graph Algorithms



3

29 March 2004 CSE 373 SP 04- Introduction 13

Reading

• Chapters 1, 2,  and 3, Data Structures and 
Algorithms in Java, by Goodrich and 
Tamassia
› Very important chapter:

• 3 on Analysis Tools

29 March 2004 CSE 373 SP 04- Introduction 14

Data Structures: What?

• Need to organize program data according to 
problem being solved

• Abstract Data Type (ADT) - A data object and a 
set of operations for manipulating it
› List ADT with operations insertand delete
› Stack ADT with operations pushand pop

• Note similarity to Java classes
› private data structure and public methods

29 March 2004 CSE 373 SP 04- Introduction 15

Data Structures: Why?

• Program design depends crucially on how 
data is structured for use by the program
› Implementation of some operations may become 

easier or harder
› Speed of program may dramatically decrease or 

increase
› Memory used may increase or decrease
› Debugging may be become easier or harder

29 March 2004 CSE 373 SP 04- Introduction 16

Terminology
• Abstract Data Type (ADT)

› Mathematical description of an object with set of 
operations on the object.  Useful building block.

• Algorithm
› A high level, language independent, description of 

a step-by-step process
• Data structure

› A specific family of algorithms for implementing an 
abstract data type.

• Implementation of data structure
› A specific implementation in a specific language

29 March 2004 CSE 373 SP 04- Introduction 17

Algorithm Analysis: Why?

• Correctness:
› Does the algorithm do what is intended.

• Performance:
› What is the running time of the algorithm.
› How much storage does it consume.

• Different algorithms may correctly solve 
a given task
› Which should I use?

29 March 2004 CSE 373 SP 04- Introduction 18

Iterative Algorithm for Sum

• Find the sum of the first num integers 
stored in an array v.  

sum(v[ ]: integer array, num: integer): integer{
temp_sum: integer ;
temp_sum := 0;
for i = 0 to num – 1 do 

temp_sum := v[i] + temp_sum;
return temp_sum;

}
Note the use of pseudocode



4

29 March 2004 CSE 373 SP 04- Introduction 19

Programming via Recursion

• Write a recursive function to find the 
sum of the first num integers stored in 
array v.

sum (v[ ]: integer array, num: integer): integer {
if num = 0 then 

return 0
else

return v[num-1] + sum(v,num-1);
}

base case

recursive
case

29 March 2004 CSE 373 SP 04- Introduction 20

Pseudocode

• In the lectures algorithms will be 
presented in pseudocode.
› This is very common in the computer 

science literature
› Pseudocode is usually easily translated to 

real code.
› This is programming language 

independent

29 March 2004 CSE 373 SP 04- Introduction 21

Proof by Induction

• Basis Step: The algorithm is correct for 
the base case (e.g. n=0) by inspection.

• Inductive Hypothesis (n=k): Assume 
that the algorithm works correctly for the 
first k cases, for any k.

• Inductive Step (n=k+1): Given the 
hypothesis above, show that the k+1
case will be calculated correctly.

29 March 2004 CSE 373 SP 04- Introduction 22

Program Correctness by 
Induction

• Basis Step: sum(v,0) = 0.  ü
• Inductive Hypothesis (n=k): Assume 

sum(v,k) correctly returns sum of first k 
elements of v, i.e. v[0]+v[1]+…+v[k-1]

• Inductive Step (n=k+1): sum(v,n) 
returns v[k]+sum(v,k) which is the sum 
of first k+1 elements of v. ü

29 March 2004 CSE 373 SP 04- Introduction 23

Algorithms vs Programs

• Proving correctness of an algorithm is very 
important
› a well designed algorithm is guaranteed to work 

correctly and its performance can be estimated

• Proving correctness of a program (an 
implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap 

between mathematical algorithms and programs


