
1

Mathematical Background 1

CSE 373
Data Structures

27 March, 2004 CSE 373 SP 04- Math Background 1 2

Basic Discrete Math Concepts

Sets
Cardinality
Relations
Cartesian Products
Functions
Properties of Functions

27 March, 2004 CSE 373 SP 04- Math Background 1 3

Sets

A set is a collection of distinct objects.
(An object is some identifiable person, place, thing,
or idea).

The objects are usually represented by symbols.

The set consisting of Jupiter and Saturn:
{Jupiter, Saturn}

27 March, 2004 CSE 373 SP 04- Math Background 1 4

Sets (Continued)
The set consisting of the first 5 primes:
{ 2, 3, 5, 7, 11}

The set consisting of all strings made up of
only a and b.
{ “”, “a”, “b”, “aa”, “ab”, “ba”, “bb”, . . . }

(or, without the use of quotes...)
{ λ, a, b, aa, ab, ba, bb, . . . }

27 March, 2004 CSE 373 SP 04- Math Background 1 5

Sets (continued)

The objects that make up a set are called its
elements or members.

If an object e is an elements of a set S, then we write
e ∈ S

The empty set { } contains zero elements.

A set may contain other sets as members:

{ {a}, {b}, {a, b} } contains three (top-level) elements.

{ { } } contains one element.

27 March, 2004 CSE 373 SP 04- Math Background 1 6

Cardinality

A set may be finite or infinite.

The cardinality of a finite set is the number of
(top-level) elements it contains.

Card({ a, b, c }) = 3

We sometimes use vertical bars:

| { a, b, c } | = 3

2

27 March, 2004 CSE 373 SP 04- Math Background 1 7

Binary Relations

Suppose S is a set. Let a ∈ S and b ∈ S.
Then (a, b) is an ordered pair of elements of S.
The set of all ordered pairs over S is:
{ (x, y) | x ∈ S, y ∈ S }
= the set of all ordered pairs (x, y) such that x is
in S and y is in S.

Any set of ordered pairs over S is called a binary
relation on S.

27 March, 2004 CSE 373 SP 04- Math Background 1 8

Binary Relations (cont)
Examples:

Let S = { a, b, c }

B1 = { (a, b), (c, b), (c, c) } is a binary relation on S.

B2 = { (a, a), (b, b), (c, c) } is a binary relation on S.
It happens to be reflexive.

B3 = { } is a binary relation on S.

It happens to be empty.

27 March, 2004 CSE 373 SP 04- Math Background 1 9

Binary Relations (reflexivity)
A binary relation on S is reflexive provided
that for every element in S, the pair of that
element with itself is a pair in S.

S = { a, b, c }

R4 = { (a, a), (a, b), (b, b), (b, c), (c, c) }
is reflexive.

R5 = { (a, a), (a, b), (b, b) } is not reflexive,
because c ∈ S but (c, c) ∉R5.

27 March, 2004 CSE 373 SP 04- Math Background 1 10

Binary Relations (symmetry)
A binary relation R on S is symmetric provided that any
pair that occurs in R also occurs “reversed” in R.

S = { a, b, c }

R6 = { (a, b), (b, a), (c, c) } is symmetric.

{ } is symmetric.

R7 = { (a, b), (b, b), (c, c) } is not symmetric, because
(a, b) ∈ R7 but (b, a) ∉R7.

27 March, 2004 CSE 373 SP 04- Math Background 1 11

Binary Relations (transitivity)
A binary relation B on S is transitive provided that
whenever there is a two-element “chain” in B there is also
the corresponding “shortcut” in B.

B is transitive iff

 (∀x ∈ S, ∀ y ∈ S, ∀ z ∈ S)

 (x, y) ∈ B and (y, z) ∈ B → (x, z) ∈ B)

R8 = { (a, b), (a, c), (b, c), (c, c) } is transitive.

R9 = { (a, b), (b, a)} is not transitive, because (a, b) and
(b, a) form a chain, but (a, a), the shortcut, is not present.

27 March, 2004 CSE 373 SP 04- Math Background 1 12

Cartesian Products

Let S1 and S2 be sets.
Then the cartesian product S1 X S2 is the set of all
ordered pairs in which the first element is a member of S1
and the second element is a member of S2.

Example:
Let A = { a, b, c }, Let B = { 1, 2 } then

A X B = { (a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2) }

3

27 March, 2004 CSE 373 SP 04- Math Background 1 13

Cartesian Products (n-way)

The n-way cartesian product S1 X S2 X ... X Sn is
the set of all ordered n-tuples in which the ith
element is an element of Si.

S1 X S2 X ... X Sn =
{ (s1, s2, ..., sn) | s1∈S1, s2∈S2, ..., s2∈S2 }

27 March, 2004 CSE 373 SP 04- Math Background 1 14

Functions

Let S1 and S2 be sets.

Let f be a subset of S1 X S2.

(f is a binary relation on S1 and S2)

If for each x in S1 there is precisely one y in S2 such that
(x, y) ∈ f, then f is a function from S1 to S2. We also say f
is a function on S1.

S1 is called the domain of f and S2 is called the range of f.

27 March, 2004 CSE 373 SP 04- Math Background 1 15

Functions (Examples)
Let S1 = { a, b, c} and S2 = { 1, 2}.
Let f1 = { (a, 1), (b, 1), (c, 2) }
f1 is a function on S1.

Let f2 = { (a, 1), (b, 1), (b, 2), (c, 1) }
f2 is not a function.

Let f3 = { (a, 1), (b, 2)}
f3 is not a function on S1.
But it is a partial function on S1.
It’s actually a function on { a, b }.

27 March, 2004 CSE 373 SP 04- Math Background 1 16

Properties of Functions

Let f be a function from S1 to S2.
If every element of S2 appears as the second element of
some ordered pair in f, then f is said to be “onto”. (It’s also
said to be a surjection.)

With S1 = { a, b, c} and S2 = { 1, 2}.
and f1 = { (a, 1), (b, 1), (c, 2) },
f1 is onto.

Let f4 = { (a, 1), (b, 1), (c, 1) } with the same domain and
range. f4 is not onto.

27 March, 2004 CSE 373 SP 04- Math Background 1 17

Properties of Functions (cont)
Let f be a function from S1 to S2.
If no two elements of S1 are paired with the same element
of S2 then f is said to be “one-to-one”. (It’s also said to be a
injection.)

With S1 = { a, b, c} and S2 = { 1, 2}.
and f1 = { (a, 1), (b, 1), (c, 2) },
f1 is not one-to-one, since a and b are both paired with 1.

Let f5 = { (a, 1), (b, 2)} with domain { a, b}. f5 is one-to-one.

27 March, 2004 CSE 373 SP 04- Math Background 1 18

Properties of Functions
Let S1 = { a, b, c} and S2 = { 1, 2}.
Let f1 = { (a, 1), (b, 1), (c, 2) }
f1 is a function on S1.

Let f2 = { (a, 1), (b, 1), (b, 2), (c, 1) }
f2 is not a function.

Let f3 = { (a, 1), (b, 2)}
f3 is not a function on S1.
But it is a partial function on S1.
It’s actually a function on { a, b }.

4

27 March, 2004 CSE 373 SP 04- Math Background 1 19

Abstract Data Types

•Motivation
•Abstract Data Types
•Example
•Using math. functions to describe an
ADT's operations.

27 March, 2004 CSE 373 SP 04- Math Background 1 20

Motivation for ADTs

To organize some data, we need to say what general
form it has, and what we expect to do with it.

Object-oriented programming provides one way of
organizing data: using classes, with their data
members and methods.

It is often helpful to specify our data without having to
choose the particular data structure yet.

27 March, 2004 CSE 373 SP 04- Math Background 1 21

Abstract Data Type (Def.)
An abstract data type consists of two parts:

a description of the general form of some data.
a set of methods.

The data is usually a set of elements, but may
also include relationships among the elements.

{ 2, 3, 5, 7, 11}
[2 < 3, 3 < 5, 5 < 7, 7 < 11, etc.]

27 March, 2004 CSE 373 SP 04- Math Background 1 22

ADT Methods

Each method in an ADT names and specifies an
operation. The operation can be described by a function.
Normally, an instance of the ADT data is one of the
arguments to the function.

Examples of methods:
INSERT(x)
MEMBER(x)
SMALLEST()
CREATE() --- A "constructor" does not use an instance of
the ADT, but creates one.

27 March, 2004 CSE 373 SP 04- Math Background 1 23

Example ADT: Stack of Integers

Data: (Ordered) list of integers.

Methods:
 CREATE, PUSH, POP, TOP, DESTROY

27 March, 2004 CSE 373 SP 04- Math Background 1 24

Using Math. Functions to
Describe ADT Methods

Why?
 Math. can be used to give a concise and
unambiguous description of a method.

What?
 1. gives a clear indication of input & output.
 2. clarifies how the data changes and what is
returned by the operation.

5

27 March, 2004 CSE 373 SP 04- Math Background 1 25

Math. Description of Methods: Domain
and Range of the Method's function

Example: the POP operation on a stack can be described
by a mathematical function:

fPOP: stacks → elements ×××× stacks
stacks = the set of all possible stacks (according to this
ADT).
elements = the set of all acceptable elements in our stacks
(e.g., integers).
 Because the operation produces an element and it causes
a change to the stack, the range of fPOP is a cartesian
product.

27 March, 2004 CSE 373 SP 04- Math Background 1 26

The Function's Effect
Now we describe how the function changes the stack and
produces a value.

fPOP : [e0,e1,...,en-1] |→ (en-1, [e0,e1,...,en-2])

The symbol " |→ " means "maps to". On its left side is a
description of a generic domain element. On its right side
is a description of the corresponding range element.

This formula indicates that the POP operation takes an n-
element stack, returns the last element, and removes it
from the stack.

