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Mathematical Background 1

CSE 373
Data Structures
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Basic Discrete Math Concepts

Sets
Cardinality
Relations
Cartesian Products
Functions
Properties of Functions
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Sets

A set is a collection of distinct objects.
(An object is some identifiable person, place, thing,
or idea).

The objects are usually represented by symbols.

The set consisting of Jupiter and Saturn:
{Jupiter, Saturn}
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Sets (Continued)
The set consisting of the first 5 primes:
{ 2, 3, 5, 7, 11}

The set consisting of all strings made up of
only a and b.
{ “”, “a”, “b”, “aa”, “ab”, “ba”, “bb”, . . . }

(or, without the use of quotes...)
{ λ, a, b, aa, ab, ba, bb, . . . }
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Sets (continued)

The objects that make up a set are called its
elements or members.

If an object e is an elements of a set S, then we write
e ∈ S

The empty set { } contains zero elements.

A set may contain other sets as members:

{ {a}, {b}, {a, b} } contains three (top-level) elements.

{ { } }  contains one element.
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Cardinality

A set may be finite or infinite.

The cardinality of a finite set is the number of
(top-level) elements it contains.

Card( { a, b, c } ) = 3

We sometimes use vertical bars:

| { a, b, c } |  = 3
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Binary Relations

Suppose S is a set. Let a ∈ S and b ∈ S.
Then (a, b) is an ordered pair of elements of S.
The set of all ordered pairs over S is:
{ (x, y) | x ∈ S, y ∈ S }
= the set of all ordered pairs (x, y) such that x is
in S and y is in S.

Any set of ordered pairs over S is called a binary
relation on S.
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Binary Relations (cont)
Examples:

Let S = { a, b, c }

B1 = { (a, b), (c, b), (c, c) }  is a binary relation on S.

B2 = { (a, a), (b, b), (c, c) }  is a binary relation on S.
It happens to be reflexive.

B3 = { }  is a binary relation on S.

It happens to be empty.
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Binary Relations (reflexivity)
A binary relation on S is reflexive provided
that for every element in S, the pair of that
element with itself is a pair in S.

S = { a, b, c }

R4 = { (a, a), (a, b), (b, b), (b, c), (c, c) }
is reflexive.

R5 = { (a, a), (a, b), (b, b) }  is not reflexive,
because c ∈ S but (c, c) ∉R5.
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Binary Relations (symmetry)
A binary relation R on S is symmetric provided that any
pair that occurs in R also occurs “reversed” in R.

S = { a, b, c }

R6 = { (a, b), (b, a), (c, c) } is symmetric.

{ } is symmetric.

R7 = { (a, b), (b, b), (c, c) }  is not symmetric, because
(a, b) ∈ R7 but (b, a) ∉R7.
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Binary Relations (transitivity)
A binary relation B on S is transitive provided that
whenever there is a two-element “chain” in B there is also
the corresponding “shortcut” in B.

B is transitive iff

   (∀x ∈ S, ∀ y ∈ S, ∀ z ∈ S)

      (x, y) ∈ B and (y, z) ∈ B → (x, z) ∈ B)

R8 = { (a, b), (a, c), (b, c), (c, c) } is transitive.

R9 = { (a, b), (b, a)} is not transitive, because (a, b) and
(b, a) form a chain, but (a, a), the shortcut, is not present.
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Cartesian Products

Let S1 and S2 be sets.
Then the cartesian product S1 X S2 is the set of all
ordered pairs in which the first element is a member of S1
and the second element is a member of S2.

Example:
Let A = { a, b, c },  Let B = { 1, 2 }    then

A X B = { (a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2) }
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Cartesian Products (n-way)

The n-way cartesian product S1 X S2 X ... X Sn is
the set of all ordered n-tuples in which the ith
element is an element of Si.

S1 X S2 X ... X Sn =
{ (s1, s2, ..., sn ) | s1∈S1, s2∈S2, ..., s2∈S2 }
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Functions

Let S1 and S2 be sets.

Let f be a subset of S1 X S2.

(f is a binary relation on S1 and S2)

If for each x in S1 there is precisely one y in S2 such that
(x, y) ∈ f, then f is a function from S1 to S2.  We also say f
is a function on S1.

S1 is called the domain of f and S2 is called the range of f.
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Functions (Examples)
Let S1 = { a, b, c} and S2 = { 1, 2}.
Let f1 = { (a, 1), (b, 1), (c, 2) }
f1 is a function on S1.

Let f2 = { (a, 1), (b, 1), (b, 2), (c, 1) }
f2 is not a function.

Let f3 = { (a, 1), (b, 2)}
f3 is not a function on S1.
But it is a partial function on S1.
It’s actually a function on { a, b }.
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Properties of Functions

Let f be a function from S1 to S2.
If every element of S2 appears as the second element of
some ordered pair in f, then f is said to be “onto”. (It’s also
said to be a surjection.)

With S1 = { a, b, c} and S2 = { 1, 2}.
and f1 = { (a, 1), (b, 1), (c, 2) },
f1 is onto.

Let f4 = { (a, 1), (b, 1), (c, 1) } with the same domain and
range.   f4 is not onto.
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Properties of Functions (cont)
Let f be a function from S1 to S2.
If no two elements of S1 are paired with the same element
of S2 then f is said to be “one-to-one”. (It’s also said to be a
injection.)

With S1 = { a, b, c} and S2 = { 1, 2}.
and f1 = { (a, 1), (b, 1), (c, 2) },
f1 is not one-to-one, since a and b are both paired with 1.

Let f5 = { (a, 1), (b, 2)} with domain { a, b}.   f5 is one-to-one.
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Properties of Functions
Let S1 = { a, b, c} and S2 = { 1, 2}.
Let f1 = { (a, 1), (b, 1), (c, 2) }
f1 is a function on S1.

Let f2 = { (a, 1), (b, 1), (b, 2), (c, 1) }
f2 is not a function.

Let f3 = { (a, 1), (b, 2)}
f3 is not a function on S1.
But it is a partial function on S1.
It’s actually a function on { a, b }.
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Abstract Data Types

•Motivation
•Abstract Data Types
•Example
•Using math. functions to describe an
ADT's operations.
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Motivation for ADTs

To organize some data, we need to say what general
form it has, and what we expect to do with it.

Object-oriented programming provides one way of
organizing data: using classes, with their data
members and methods.

It is often helpful to specify our data without having to
choose the particular data structure yet.
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Abstract Data Type (Def.)
An abstract data type consists of two parts:

a description of the general form of some data.
a set of methods.

The data is usually a set of elements, but may
also include relationships among the elements.

{ 2, 3, 5, 7, 11}
[2 < 3, 3 < 5, 5 < 7, 7 < 11, etc.]
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ADT Methods

Each method in an ADT names and specifies an
operation.  The operation can be described by a function.
Normally, an instance of the ADT data is one of the
arguments to the function.

Examples of methods:
INSERT(x)
MEMBER(x)
SMALLEST( )
CREATE( ) --- A "constructor" does not use an instance of
the ADT, but creates one.

27 March, 2004 CSE 373 SP 04- Math Background 1 23

Example ADT: Stack of Integers

Data:  (Ordered) list of integers.

Methods:
   CREATE, PUSH, POP, TOP, DESTROY
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Using Math. Functions to
Describe ADT Methods

Why?
  Math. can be used to give a concise and
unambiguous description of a method.

What?
  1. gives a clear indication of input & output.
  2. clarifies how the data changes and what is
returned by the operation.
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Math. Description of Methods:  Domain
and Range of the Method's function

Example:  the POP operation on a stack can be described
by a mathematical function:

fPOP: stacks →  elements ×××× stacks
stacks = the set of all possible stacks (according to this
ADT).
elements = the set of all acceptable elements in our stacks
(e.g., integers).
  Because the operation produces an element and it causes
a change to the stack, the range of fPOP is a cartesian
product.
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The Function's Effect
Now we describe how the function changes the stack and
produces a value.

fPOP : [e0,e1,...,en-1] |→  ( en-1, [e0,e1,...,en-2] )

The symbol " |→ "  means "maps to".  On its left side is a
description of a generic domain element.  On its right side
is a description of the corresponding range element.

This formula indicates that the POP operation takes an n-
element stack, returns the last element, and removes it
from the stack.


