Mathematical Background 1
CSE 373
Data Structures

```
Sets
Cardinality
Relations
Cartesian Products
Functions
Properties of Functions
```

Sets
A set is a collection of distinct objects. (An object is some identifiable person, place, thing, or idea). The objects are usually represented by symbols. The set consisting of Jupiter and Saturn: \{Jupiter, Saturn\} ${ }^{27}$ March, 2004 \quad CSE 373 sp 04 Mart Backround 1

Sets (Continued)

The set consisting of the first 5 primes:
\{ $2,3,5,7,11\}$
The set consisting of all strings made up of only a and b.
\{"", "a", "b", "aa", "ab", "ba", "bb", . . . \}
(or, without the use of quotes...)
$\{\lambda, a, b, a a, a b, b a, b b, \ldots\}$

27 March, 2004
CSE 373 SP 04- Math Background 1

Sets (continued)

The objects that make up a set are called its elements or members.

If an object e is an elements of a set S, then we write
A set may be finite or infinite.
The cardinality of a finite set is the number of (top-level) elements it contains.
The empty set $\}$ contains zero elements.
A set may contain other sets as members:
$\{\{a\},\{b\},\{a, b\}\}$ contains three (top-level) elements.
\{ \{ \} \} contains one element.

Card ($\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$) $=3$
We sometimes use vertical bars:
$|\{a, b, c\}|=3$

27 March, 2004
CSE 373 SP 04- Math Background 1
6

Binary Relations

Suppose S is a set. Let $a \in S$ and $b \in S$.
Then (a, b) is an ordered pair of elements of S.
The set of all ordered pairs over S is:
$\{(x, y) \mid x \in S, y \in S\}$
$=$ the set of all ordered pairs (x, y) such that x is in S and y is in S.

Any set of ordered pairs over S is called a binary relation on S .

27 March, 2004

Examples:

Let $S=\{a, b, c\}$
$B_{1}=\{(a, b),(c, b),(c, c)\}$ is a binary relation on S.
$B_{2}=\{(a, a),(b, b),(c, c)\}$ is a binary relation on S.
It happens to be reflexive.
$B_{3}=\{ \}$ is a binary relation on S.
It happens to be empty.

Binary Relations (symmetry)

A binary relation R on S is symmetric provided that any

 pair that occurs in R also occurs "reversed" in R .$S=\{a, b, c\}$
$R_{6}=\{(a, b),(b, a),(c, c)\}$ is symmetric.
\{ \} is symmetric.
$R_{7}=\{(a, b),(b, b),(c, c)\}$ is not symmetric, because
$(a, b) \in R_{7}$ but $(b, a) \notin R_{7}$.

```
R 
because c \in S but (c, c) & R R .
\(R_{5}=\{(a, a),(a, b),(b, b)\}\) is not reflexive,
```

A binary relation on S is reflexive provided that for every element in S , the pair of that element with itself is a pair in S .
$S=\{a, b, c\}$
$R_{4}=\{(a, a),(a, b),(b, b),(b, c),(c, c)\}$ is reflexive.

Binary Relations (transitivity)

A binary relation B on S is transitive provided that whenever there is a two-element "chain" in B there is also the corresponding "shortcut" in B.
B is transitive iff
($\forall x \in S, \forall y \in S, \forall z \in S$)
$(x, y) \in B$ and $(y, z) \in B \rightarrow(x, z) \in B)$
$R_{8}=\{(a, b),(a, c),(b, c),(c, c)\}$ is transitive.
$R_{9}=\{(a, b),(b, a)\}$ is not transitive, because (a, b) and (b, a) form a chain, but (a, a), the shortcut, is not present.

Cartesian Products

[^0]
Cartesian Products (n-way)

The n-way cartesian product $S_{1} \times S_{2} \times \ldots \times S_{n}$ is the set of all ordered n-tuples in which the $\mathrm{i}^{\text {th }}$ element is an element of S_{i}.
$S_{1} \times S_{2} \times \ldots \times S_{n}=$
$\left\{\left(s_{1}, s_{2}, \ldots, s_{n}\right) \mid s_{1} \in S_{1}, s_{2} \in S_{2}, \ldots, s_{2} \in S_{2}\right\}$

27 March, 2004
CSE 373 SP 04- Math Background 1

Functions

Let S_{1} and S_{2} be sets.
Let f be a subset of $S_{1} \times S_{2}$.
(f is a binary relation on S_{1} and S_{2})
If for each x in S_{1} there is precisely one y in S_{2} such that $(\mathrm{x}, \mathrm{y}) \in \mathrm{f}$, then f is a function from S_{1} to S_{2}. We also say f is a function on S1.
S_{1} is called the domain of f and S_{2} is called the range of f.
27 March, 2004 CSE 373 SP 04- Math Background 1 14

Functions (Examples)

Let $\mathrm{S}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{S}_{2}=\{1,2\}$.
Let $f_{1}=\{(a, 1),(b, 1),(c, 2)\}$
f_{1} is a function on S_{1}.
Let $\mathrm{f}_{2}=\{(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{b}, 2),(\mathrm{c}, 1)\}$
f_{2} is not a function.
Let $\mathrm{f}_{3}=\{(\mathrm{a}, 1),(\mathrm{b}, 2)\}$
f_{3} is not a function on S_{1}
But it is a partial function on S_{1}.
It's actually a function on $\{a, b\}$.

Properties of Functions (cont)

```
```

Let f be a function from }\mp@subsup{S}{1}{}\mathrm{ to }\mp@subsup{S}{2}{}\mathrm{ .

```
```

Let f be a function from }\mp@subsup{S}{1}{}\mathrm{ to }\mp@subsup{S}{2}{}\mathrm{ .
If no two elements of S}\mp@subsup{S}{1}{}\mathrm{ are paired with the same element
If no two elements of S}\mp@subsup{S}{1}{}\mathrm{ are paired with the same element
of }\mp@subsup{S}{2}{}\mathrm{ then f is said to be "one-to-one". (It's also said to be a
of }\mp@subsup{S}{2}{}\mathrm{ then f is said to be "one-to-one". (It's also said to be a
injection.)
injection.)
With }\mp@subsup{S}{1}{}={a,b,c}\mathrm{ and }\mp@subsup{S}{2}{}={1,2}
With }\mp@subsup{S}{1}{}={a,b,c}\mathrm{ and }\mp@subsup{S}{2}{}={1,2}
and f}\mp@subsup{f}{1}{}={(a,1),(b,1),(c,2)}\mathrm{ ,
and f}\mp@subsup{f}{1}{}={(a,1),(b,1),(c,2)}\mathrm{ ,
f
f
Let f
Let f
27 March, 2004
27 March, 2004
CSE 373 SP 04-Math Background 1

```
    CSE 373 SP 04-Math Background 1
```


Properties of Functions

Let f be a function from S_{1} to S_{2}.
If every element of S_{2} appears as the second element of some ordered pair in f , then f is said to be "onto". (It's also said to be a surjection.)

With $\mathrm{S}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{S}_{2}=\{1,2\}$.
and $f_{1}=\{(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{c}, 2)\}$,
f_{1} is onto.
Let $f_{4}=\{(a, 1),(b, 1),(c, 1)\}$ with the same domain and range. f_{4} is not onto.

27 March, 2004 CSE 373 SP 04- Math Background 1
16

Properties of Functions

[^1]
Abstract Data Types

- Motivation

- Abstract Data Types
- Example
- Using math. functions to describe an ADT's operations.

Motivation for ADTs

To organize some data, we need to say what general form it has, and what we expect to do with it.

Object-oriented programming provides one way of organizing data: using classes, with their data members and methods.

It is often helpful to specify our data without having to choose the particular data structure yet

Abstract Data Type (Def.)

An abstract data type consists of two parts: a description of the general form of some data. a set of methods.

The data is usually a set of elements, but may also include relationships among the elements
$\{2,3,5,7,11\}$
[$2<3,3<5,5<7,7<11$, etc.]

ADT Methods

Each method in an ADT names and specifies an operation. The operation can be described by a function. Normally, an instance of the ADT data is one of the arguments to the function

Examples of methods:
NSERT(x)
MEMBER(x)
SMALLEST()
CREATE() --- A "constructor" does not use an instance of the ADT, but creates one
27 March, 2004 CSE 373 SP 04- Math Background 1 22

Example ADT: Stack of Integers

Using Math. Functions to Describe ADT Methods

Why?

Math. can be used to give a concise and unambiguous description of a method.

What?

1. gives a clear indication of input \& output.
2. clarifies how the data changes and what is returned by the operation

Math. Description of Methods: Domain and Range of the Method's function

Example: the POP operation on a stack can be described by a mathematical function:
$\mathrm{f}_{\text {Pop }}$: stacks \rightarrow elements \times stacks
stacks $=$ the set of all possible stacks (according to this ADT).
elements $=$ the set of all acceptable elements in our stacks (e.g., integers).

Because the operation produces an element and it causes a change to the stack, the range of $f_{p O p}$ is a cartesian product.

27 March, 2004
CSE 373 SP 04-Math Background 1
25

The Function's Effect

Now we describe how the function changes the stack and produces a value.

$$
f_{\text {POP }}:\left[e_{0}, e_{1}, \ldots, e_{n-1}\right] \mapsto\left(e_{n-1},\left[e_{0}, e_{1}, \ldots, e_{n-2}\right]\right)
$$

The symbol " $\mid \rightarrow$ " means "maps to". On its left side is a description of a generic domain element. On its right side is a description of the corresponding range element.

This formula indicates that the POP operation takes an nelement stack, returns the last element, and removes it from the stack.

27 March, 2004 CSE 373 SP 04- Math Background 1 26

[^0]: Let S_{1} and S_{2} be sets.
 Then the cartesian product $S_{1} \times S_{2}$ is the set of all ordered pairs in which the first element is a member of S_{1} and the second element is a member of S_{2}.

 Example:
 Let $A=\{a, b, c\}$, Let $B=\{1,2\}$ then
 $A \times B=\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\}$

 27 March, 2004 CSE 373 SP 04- Math Background 1

[^1]: Let $\mathrm{S}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{S}_{2}=\{1,2\}$.
 Let $\mathrm{f}_{1}=\{(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{c}, 2)\}$
 f_{1} is a function on S_{1}.
 Let $f_{2}=\{(a, 1),(b, 1),(b, 2),(c, 1)\}$
 f_{2} is not a function.
 Let $\mathrm{f}_{3}=\{(\mathrm{a}, 1),(\mathrm{b}, 2)\}$
 f_{3} is not a function on S_{1}.
 But it is a partial function on S_{1}. It's actually a function on $\{a, b\}$.

