Mathematical Background 2

CSE 373 Data Structures

Mathematical Background 2

- Today, we will review:
 - > Logs and exponents
 - > Series
 - > Recursion
 - › Motivation for Algorithm Analysis

26 March 2004

CSE 373 SP 04- Math Background 2

Powers of 2

- Many of the numbers we use in Computer Science are powers of 2
- Binary numbers (base 2) are easily represented in digital computers
 - > each "bit" is a 0 or a 1
 - $2^{0}=1, 2^{1}=2, 2^{2}=4, 2^{3}=8, 2^{4}=16, ..., 2^{10}=1024$ (1K)
 - , an n-bit wide field can hold 2ⁿ positive integers:
 - $0 \le k \le 2^{n-1}$

26 March 2004

CSE 373 SP 04- Math

Unsigned binary numbers

For unsigned numbers in a fixed width field

- > the minimum value is 0
- the maximum value is 2n-1, where n is the number of bits in the field The value is $\sum_{i=0}^{i=n-1} a_i 2^i$
- Each bit position represents a power of 2 with $a_i = 0$ or $a_i = 1$

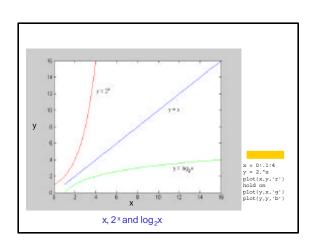
CSE 373 SP 04- Math

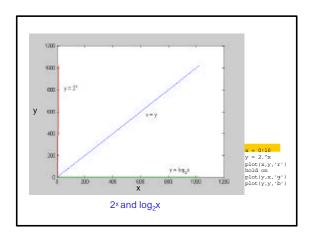
Logs and exponents

- Definition: log₂ x = y means x = 2^y
 - $98 = 2^3$, so $\log_2 8 = 3$
 - \Rightarrow 65536= 2¹⁶, so $\log_2 65536 = 16$
- Notice that log₂x tells you how many bits are needed to hold x values
 - > 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255
 - $\log_2 256 = 8$

26 March 2004

CSE 373 SP 04- Math





 $\lfloor 2.7 \rfloor = 2$ $\lfloor -2.7 \rfloor = -3$ $\lfloor 2 \rfloor = 2$

 $\lceil X \rceil$ Ceiling function: the smallest integer $\geq X$

 $\lceil 2.3 \rceil = 3$ $\lceil -2.3 \rceil = -2$ $\lceil 2 \rceil = 2$

26 March 2004 CSE 373 SP 04- Math Background 2

Facts about Floor and Ceiling

- 1. $X-1<|X| \le X$
- 2. $X \leq [X] < X+1$
- 3. $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$ if n is an integer

26 March 2004 CSE 373 SP 04- Math

Properties of logs (of the mathematical kind)

- We will assume logs to base 2 unless specified otherwise
- log AB = log A + log B
 - A=2log₂A and B=2log₂B
 - $\rightarrow AB = 2^{\log_2 A} \bullet 2^{\log_2 B} = 2^{\log_2 A + \log_2 B}$
 - \rightarrow so $log_2AB = log_2A + log_2B$
 - > [note: log AB 1 log A•log B]

farch 2004 CSE 373 SP 04- Math

Other log properties

- $\log A/B = \log A \log B$
- log (AB) = B log A
- log log X < log X < X for all X > 0
 - \rightarrow log log X = Y means $2^{2^{Y}} = X$
 - > log X grows slower than X
 - called a "sub-linear" function

26 March 2004 CSE 373 SP 04- Math 11

A log is a log is a log

 Any base x log is equivalent to base 2 log within a constant factor

 $\begin{array}{c} \text{log,B} = \text{log,B} \\ \text{B} = 2^{\log_2 B} \\ \text{x} = 2^{\log_2 x} \\ \end{array} \qquad \begin{array}{c} \text{substitution} \quad x^{\log_2 B} = B \\ \text{x} \quad x^{\log_2 x} = 2^{\log_2 B} \\ \end{array} \qquad \begin{array}{c} \text{by def. of logs} \\ \text{2}^{\log_2 x \log_2 B} = 2^{\log_2 B} \\ \text{log_2} \quad x = 2^{\log_2 B} \\ \end{array} \qquad \begin{array}{c} \text{log_2 B} = \frac{\log_2 B}{\log_2 x} \\ \end{array}$

26 March 2004 CSE 373 SP 04- Math

Arithmetic Series

- $S(N) = 1 + 2 + ... + N = \sum_{i=1}^{N} i$
- The sum is
 - > S(1) = 1
 - S(2) = 1+2 = 3
 - S(3) = 1+2+3 = 6
- $\bullet \quad \sum_{i=1}^{N} i = \frac{N(N+1)}{2}$

Why is this formula useful when you analyze algorithms?

26 March 2004

CSE 373 SP 04- Math Background 2

Algorithm Analysis

• Consider the following program segment:

```
x:= 0;
for i = 1 to N do
  for j = 1 to i do
    x := x + 1:
```

• What is the value of x at the end?

26 March 2004

CSE 373 SP 04- Math Background 2

Analyzing the Loop

- Total number of times x is incremented is the number of "instructions" executed $= \frac{1+2+3+...=\sum\limits_{i=1}^{N}i=\frac{N(N+1)}{2}}{1+\frac{N(N+1)}{2}}$
- You've just analyzed the program!
 - Running time of the program is proportional to N(N+1)/2 for all N
 -) O(N2)

26 March 2004

CSE 373 SP 04- Math

Analyzing Mergesort

```
Mergesort(p : node pointer) : node pointer {
Case {
  p = null : return p; //no elements
  p.next = null : return p; //one element
  else
    d : duo pointer; // duo has two fields first,second
    d := Split(p);
    return Merge(Mergesort(d.first),Mergesort(d.second));
}

T(n) is the time to sort n items.
    T(0),T(1) \leq c
    T(n) \leq T(\left[n/2])+T(\left[n/2])+dn

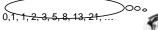
26 March 2004
    CSE 373 SP 04- Math
    16
```

Mergesort Analysis
Upper Bound

```
\begin{split} T(n) &\leq 2T(n/2) + dn & \text{Assuming } n \text{ is a power of } 2 \\ &\leq 2(2T(n/4) + dn/2) + dn \\ &= 4T(n/4) + 2dn \\ &\leq 4(2T(n/8) + dn/4) + 2dn \\ &= 8T(n/8) + 3dn \\ &\vdots \\ &\leq 2^kT(n/2^k) + kdn \\ &= nT(1) + kdn & \text{if } n = 2^k & n = 2^k, k = \log n \\ &\leq cn + dn \log_2 n \\ &= O(n \log n) \end{split}
```

Recursion Used Badly

• Classic example: Fibonacci numbers F_n



 \rightarrow $F_0 = 0$, $F_1 = 1$ (Base Cases)

Rest are sum of preceding two $F_n = F_{n-1} + F_{n-2}$ (n > 1)

Leonardo Pisano Fibonacci (1170-1250)

14

26 March 2004

CSE 373 SP 04- Math Background 2

Recursive Procedure for Fibonacci Numbers

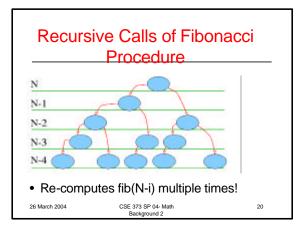
```
fib(n : integer): integer {
   Case {
    n < 0 : return 0;
    n = 1 : return 1;
   else : return fib(n-1) + fib(n-2);
   }
}</pre>
```

- Easy to write: looks like the definition of F_n
- · But, can you spot the big problem?

26 March 2004

CSE 373 SP 04- Math

19



Fibonacci Analysis Lower Bound

 $\mathsf{T}(\mathsf{n})$ is the time to compute $\mathsf{fib}(\mathsf{n})$.

 $T(0),T(1)\geq 1$

 $T(n)\!\ge\! T(n\!-\!1)\!+\!T(n\!-\!2)$

It can be shown by induction that $T(n) \ge f^{n-2}$ where

 $f = \frac{1+\sqrt{5}}{2} \approx 1.62$

26 March 2004

CSE 373 SP 04- Math

Iterative Algorithm for Fibonacci Numbers

26 March 2004

CSE 373 SP 04- Math

Recursion Summary

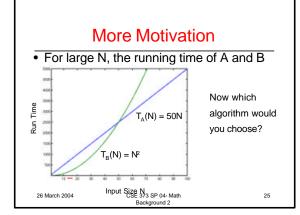
- Recursion may simplify programming, but beware of generating large numbers of calls
 - Function calls can be expensive in terms of time and space
- Be sure to get the base case(s) correct!
- Each step must get you closer to the base case

26 March 2004

CSE 373 SP 04- Math

23

Motivation for Algorithm **Analysis** · Suppose you are given two algorithms given two argo..... A and B for solving a T_A problem The running times $T_A(N)$ and $T_B(N)$ of A T_B and B as a function of input size N are given Input Size N Which is better? 26 March 2004 CSE 373 SP 04- Math



Asymptotic Behavior

- The "asymptotic" performance as N → ∞, regardless of what happens for small input sizes N, is generally most important
- Performance for small input sizes may matter in practice, if you are <u>sure</u> that <u>small</u> N will be common forever
- We will compare algorithms based on how they scale for large values of N

26 March 2004

CSE 373 SP 04- Math Background 2 26

Order Notation (one more time)

- Mainly used to express upper bounds on time of algorithms. "n" is the size of the input.
- T(n) = O(f(n)) if there are constants c and n_0 such that $T(n) \le c f(n)$ for all $n \ge n_0$.
 - \rightarrow 10000n + 10 n log₂ n = O(n log n)
 - > .00001 n² ≠ O(n log n)
- Order notation ignores constant factors and low order terms.

26 March 2004

CSE 373 SP 04- Math

Some Basic Time Bounds

27

Why Order Notation

- Program performance may vary by a constant factor depending on the compiler and the computer used.
- In asymptotic performance (n →∞) the low order terms are negligible.

26 March 2004

CSE 373 SP 04- Math

Kinds of Analysis

- Logarithmic time is O(log n)
- Linear time is O(n)
- Quadratic time is 0(n²)
- Cubic time is O(n3)
- Polynomial time is O(nk) for some k.
- Exponential time is O(cⁿ) for some c > 1.

26 March 2004

CSE 373 SP 04- Math

20

- Asymptotic uses order notation, ignores constant factors and low order terms.
- · Upper bound vs. lower bound
- Worst case time bound valid for all inputs of length
- Average case time bound valid on average requires a distribution of inputs.
- Amortized worst case time averaged over a sequence of operations.
- Others best case, common case (80%-20%) etc.

26 March 2004

CSE 373 SP 04- Math Background 2 30