Mathematical Background 2

CSE 373
Data Structures

Mathematical Background 2

» Today, we will review:
> Logs and exponents
> Series
> Recursion
> Motivation for Algorithm Analysis

26 March 2004 CSE 373 SP 04- Math 2
Background 2

Powers of 2

» Many of the numbers we use in Computer
Science are powers of 2

* Binary numbers (base 2) are easily
represented in digital computers
> each "bit"isaOoral
> 20=1, 21=2, 22=4, 23=8, 24=16,..., 210 =1024 (1K)

>, an n-bit wide field can hold Wrs:
e 0EKE201

26 March 2004 CSE 373 SP 04- Math 3
2

Unsigned binary numbers

For unsigned numbers in a fixed width
field
> the minimum value is 0
> the maximum value is 2"-1, where n is the
number of bits in the field
. 0 i=n-1 i
> Thevalueisg &2
Each bit position represents a power of
2witha,= Oora, = 1

26 March 2004 CSE 373 SP 04- Math 4

Logs and exponents

* Definition: log, X =y means x = 2¥
>»8=2%s0log,8=3
> 65536=216, so log,65536 = 16
* Notice that log,x tells you how many bits
are needed to hold x values
> 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255
> l0og,256 =8

26 March 2004 CSE 373 SP 04- Math 5

Background 2

X, 2*and log ,x

|
y m Z
anl
. x = 0:10
A y = 2.7
plot(x,y,'r')
7= log. hol d on
1] " | L X,'g
th T R T TR R

2*and log,x

Floor and Ceiling

éXC Floor function: the largest integer < X
@7(=2 @&27(=-3 @(=2
éX[\, Ceiling function: the smallest integer > X

@®30=3 ¢23p=-2 &Uu=2

26 March 2004 CSE 373 SP 04- Math 8
Background 2

Facts about Floor and Ceiling

1. X-1<g(£EX
2. XEEX(I<X+1
3. @20+ &/2(=n ifnisaninteger

26 March 2004 CSE 373 SP 04- Math 9
2

Properties of logs (of the

e

» We will assume logs to base 2 unless
specified otherwise

* log AB =log A +log B
> A=2°9,A and B=2l09,B
> AB = 2/09,A ¢ 2l0g,B = Dlog,A+log,B

> so0 log,AB = log,A + log,B

> [note: log AB ! log Aslog B]

26 March 2004 CSE 373 SP 04- Math 10

Other log properties

* log A/B =log A—log B
* log (AB)=Blog A
e loglog X<log X< Xforall X>0
> log log X =Y means 22" = x
> log X grows slower than X
« called a“sub-linear” function

26 March 2004 CSE 373 SP 04- Math 11

Background 2

Alogis alogis alog

» Any base x log is equivalent to base 2 log
within a constant factor

/I%iBﬂeng
X8 =Bl ,log,B_g

B = Dlose substitution
(2‘;9%)Icg 5 EIGQQB by def. of logs
— nlog,x o=
X =299
20%:x1098 _ HlouB

log,x lpg;B=toy,B

log,B

lpg,B :_gz_

TOgX

26 March 2004 CSE 373 SP 04- Math 12

Background

Arithmetic Series

N
e S(N)=1+2+..+N=§ i

i=1

¢ The sumis

> S@)=1

> S(2)=1+2=3

> S(3)=1+2+3=6
. g i= _N(N +1) Why is this formula useful

i1 2 when you analyze algorithms?
26 March 2004 CSE 373 SP 04- Math 13

Background 2

Algorithm Analysis

« Consider the following program

segment:

x:= 0;

for i =1 to Ndo
for j =1toi do
X 1= X + 1

* What is the value of x at the end?

26 March 2004 CSE 373 SP 04- Math 14
Background 2

Analyzing the Loop

» Total number of times x is incremented
is the number of “instructions” executed

N
= 1+2+3+...:éi:m
i=1

 You've just analyzed the program!

> Running time of the program is proportional
to N(N+1)/2 for all N
> O(N?)

26 March 2004 CSE 373 SP 04- Math 15
2

Analyzing Mergesort

Mergesort(p : node pointer) : node pointer {
Case {
p =null : return p; //no elenents
p.next = null : return p; //one el enent
el se
d : duo pointer; // duo has two fields first, second
d:= Split(p);
return Merge(Mergesort(d.first), Mergesort(d.second));
}

} T(n)isthe timeto sortnitems.
T(0),T(1)£c
T(n) £ T(&/2()+ T(/2) +dn

26 March 2004 CSE 373 SP 04- Math 16

Mergesort Analysis

11 =Y [l
Upper bouna
T(n) £ 2T(n/2) +dn Assuming nis a power of 2
£ 2(2T(n/4) +dn/2) +dn
=4T(n/4) +2dn
£ 4(2T(n/8) +dn/4) +2dn
=8T(n/8) +3dn

£2°T(n/2*) +kdn

=nT(1) +kdn ifn=2* n=2<k=logn
£cn+dnlog,n

=0O(n logn)

26 March 2004 CSE 373 SP 04- Math 17

Recursion Used Badly

* Classic example: Fibonacci numbers F,

>»F,=0,F, =1 (Base Cases)

> Rest are sum of precedingtwo | .
|:rI = Fn-l + Fn_2 (n>1) Fibonacci (1170-1250)

26 March 2004 CSE 373 SP 04- Math 18

Background 2

Background

Recursive Procedure for
Fibonacci Numbers

fib(n: integer): integer {
Case {
n<0: return 0;
n=1: return 1;
else : return fib(n-1) + fib(n-2);
}
}

» Easy to write: looks like the definition of F,
« But, can you spot the big problem?

26 March 2004 CSE 373 SP 04- Math 19
Background 2

Recursive Calls of Fibonacci

Procedure
N ., X
-1 'ﬁ_ A
2 @ | @
'\-1 S L :' S ! L —
! i -

» Re-computes fib(N-i) multiple times!

26 March 2004 CSE 373 SP 04- Math 20
Background 2

Fibonacci Analysis
— el

T(n)is the timeto compute fib(n).
T(0), T(1)31
T(n)? T(n-1)+T(n-2)

It can be shown by induction that T(n) > f n2

where
f= # »1.62

26 March 2004 CSE 373 SP 04- Math 21
2

Iterative Algorithm for
| : I

fib_iter(n : integer): integer {
fibo, fibl, fibresult, i : integer;
fibo :=0; fibl :=1;
case {_

n<0: fibresult :=0;

n=1: fibresult :=1;

else :
or i =2tondo{
fibresult := fib0o + fibil;
fib0o := fibl;
) fibl := fibresult;

}
return fibresult;

o 1A

26 March 2004 CSE 373 SP 04- Math 22

Recursion Summary

» Recursion may simplify programming, but
beware of generating large numbers of
calls

> Function calls can be expensive in terms of
time and space

* Be sure to get the base case(s) correct!

» Each step must get you closer to the base
case

26 March 2004 CSE 373 SP 04- Math 23

Motivation for Algorithm
Aralysis

Suppose you are
given two algorithms = A
A and B for solving a » _| S Ta l
problem 1
The running times L/
Ta(N)and Tg(N) of A 7 .~ J

Run Timi
™,

and B as a function of .
input size N are given

Input Size N
Which is better?

26 March 2004 CSE 373 SP 04- Math 24

Background 2

Background

More Motivation
« For large N, the running time of A and B

- F e |
/ - |
rd | Now which

[} I |

£ /7 T,\(N) = 50N | algorithm would
c 7 {

2 Py 7 | you choose?
. |
/”_ Te(N) = N2
/.’
26 March 2004 Input S(%E 5173 SP 04- Math 25

Background 2

Asymptotic Behavior

* The “asymptotic” performance as N ® ¥,
regardless of what happens for small input
sizes N, is generally most important

« Performance for small input sizes may
matter in practice, if you are sure that small
N will be common forever,

« We will compare algorithms based on how
they scale for large values of N

26 March 2004 CSE 373 SP 04- Math 26
Background 2

Order Notation (one more time)

* Mainly used to express upper bounds on time
of algorithms. “n” is the size of the input.
* T(n) = O(f(n)) if there are constants ¢ and n,,
such that T(n) < c f(n) for all n > n,.
> 10000n + 10 nlog, n=0O(n log n)
> .00001n21 O(n log n)
« Order notation ignores constant factors and
low order terms.

26 March 2004 CSE 373 SP 04- Math 27
2

Why Order Notation

» Program performance may vary by a
constant factor depending on the
compiler and the computer used.

* In asymptotic performance (n ® ¥) the
low order terms are negligible.

26 March 2004 CSE 373 SP 04- Math 28

Some Basic Time Bounds

Logarithmic time is O(log n)

* Linear time is O(n)

» Quadratic time is O(n?)

* Cubic time is O(n®)

 Polynomial time is O(n¥) for some k.

» Exponential time is O(c") for some ¢ > 1.

26 March 2004 CSE 373 SP 04- Math 29

Kinds of Analysis

* Asymptotic — uses order notation, ignores constant
factors and low order terms.

« Upper bound vs. lower bound

» Worst case — time bound valid for all inputs of length
n.

« Average case — time bound valid on average —

requires a distribution of inputs.

Amortized — worst case time averaged over a

sequence of operations.

« Others —best case, common case (80%-20%) etc.

26 March 2004 CSE 373 SP 04- Math 30

Background 2

Background

